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ABSTRACT

Computer Interpretation of a Dynamic
Image from a Moving Vehicle

May 1981

Thomas Dell Williams

A.S. Northern Essex Community College

B.S. University of Massachusetts

M.S. University of Massachusetts

Ph.D. University of Massachusetts

Directed by: Professor Edward M. Riseman

The goal of this thesis is the design and

implementation of a computer program that constructs an

interpretation of images of a natural scene, in

particular one imaged while the camera is in a moving

automobile. The succession of images is to be

interpreted in terms of surfaces and objects in

three-dimensional space.

The agreement between image dynamics and an

internal surface model of the environment is measured by

comparing a pair of temporally disparate images (two

movie frames). Using the model, an image taken at one

location can be transformed into a synthetic image of

the scene as it would be viewed from another location.

This synthesis accounts for point displacements and

vi
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occlusion effects as predicted by the internal model.

Differences between the real and the synthetic images

are then used as an error measure in a search that

refines the model. Once the model is refined,

unresolved errors are used to correct the initial

surface mocel by resegmenting the image into a better

approximation of the surfaces in the environment.-

This surface model refinement is followed by an

object identification phase. Size and color attributes

measured from the derived internal model are compared

with stored attributes for objects. The result is the

identification of some of the scene objects.
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CHAPTER I

INTRODUCTION

Humans rely heavily on vision to recognize, measure

and appreciate their environment. The speed, accuracy,

and reliability of human vision challenges those who

would construct an artificial system with similar

performance. No one has yet succeeded in constructing

such a system, although many advances in the field of

scene analysis have taken us closer to that goal.

Theorists have proposed (Gibson 1950, Marr 1977)

that sufficient information exists in static and dynamic

images to derive an understanding of the physical

environment depicted in the images. These theories

suggest that object/background separation, the size and

shape of objects, and distances to them can be determined

without prior knowledge of the specific objects that

appear.

Pictorial cues such as texture, shadows, and

occlusion that are available in static monocular images

can be used to infer important depth information. Humans

can understand a static image as surfaces and objects in

the physical world. This implies that there is

sufficient information preserved in a static image to
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allow the reconstruction of a plausible three dimensional

scene.

Static scene analysis systems (Barrow 1978, Hanson

1978b, Bullock 1978) exploit pictorial depth cues in an

attempt to derive an interpretation of an image as

surfaces and objects. Once depth information is

obtained, the orientation of surfaces, the identity of

objects, and the spatial layout of the scene can be

determined. However, the problem of automatic and

reliable inference of depth from static cues remains

unsolved for general static scenes, although considerable

progress is being made at understanding what the cues

are, and how to use them.

The motion of imaged scene points from a moving

camera provides direct rather than inferred depth

information. The convincing fidelity of depth conveyed

in motion pictures demonstrates the ability of a dynamic

image to preserve depth information in a direct and

accurate manner.

I
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1.1 Goals

The goal of this thesis is the design and

implementation of a computer program that constructs an

interpretation from images of a natural scene, in

particular one imaged while the camera is in a moving

automobile. Motion cues derived from successive frames

of a movie will be exploited to allow the moving image to

be interpreted in terms of surfaces and objects in

three-dimensional space.

A second and related goal is the identification of

objects based on color, texture and size. This goal is

an exercise in the structuring of high level knowledge

about scenes and objects. An object identification

system is presented which uses as input the results of

the surface interpretation process.

The goals are met through a set of experiments that

are presented in chapters IV and V. Our methodology for

system development involved the testing of each subsystem

individually by providing it with the information that

other sybsystems would produce in the completed system.

Then the entire system's behavior was tested.

I
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1.2 Image Interpretation via Motion

In this thesis techniques from the field of static

scene analysis are extended by incorporating depth cues

derived from a dynamic image. We chose to analyze

dynamic images because important depth information is

available for use in directly segmenting objects from

their background. We propose a group of processes for

interpretation of a natural scene that is successively

photographed by a camera in motion (Figure 1). These

movie frames are to be interpreted in terms of surfaces

and objects of the scene. Motion information leads to a

description of the scene in terms of surfaces, which in

turn leads to a description of the scene in terms of

object identities (see figure 2).

One subsystem is explored in great detail since it

is the basis for an approximate surface interpretation of

the physical environment. A model is hypothesized

depicting the three-dimensional positions of scene

surfaces relative to the camera. Then, the motions of

image features are used to refine this model. The

surface interpretation provides both the

object/background segmentation and size measurements for

object identification. An object interpretation is

I
I
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Figure I qTe :;cenc'rio tthat this thesis examins is

that of a camera in motion.
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produced by comparing both spectral features from the

image and size information from the surface

interpretation to prototypes which are associated with

stored object names.

1.3 Depth from Motion

To determine the distance from the camera to scene

points based on the positions of points on the image

plane, images of the scene taken in two physically

disparate locations are used. For each scene point that

appears in both images, an inter-image displacement can

be measured. By simple triangulation the

three-dimensional position of each point with respect to

the camera can be determined. This technique is called

"motion stereo" because it involves the compariscn of a

pair of images taken from a moving camera.

Automatic discovery of the displacement of

projections of a scene point between two images is called

the "correspondence problem" (Ullman 1978, Quam 1974a),

or "stimulus organization problem" (Burt 1976). The

thrust of most research in stereo image understanding has

been the reliable and fast computation of inter-image

correspondence of points. The system presented here

develops an interpretation of distances using an
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hypothesize-test strategy. An hypothesized

three-dimensional interpretation - expressed as a model

of scene surfaces - predicts image dynamics which are

tested through inter-image comparisons. This is in

contrast to the more common motion detection techniques

(Quam 1974, Prager 1979, Thompson 1979) that detect image

dynamics to generate a three-dimensional model of the

scene without any prior hypotheses about the surfaces in

the scene (figure 3).

1.4 Surface Interpretation

Surfaces are the boundaries of objects, and are the

places where the scene illumination is reflected. In

general surfaces are curved, and very sharp curvature of

surfaces, such as where two faces of a cube meet, are

called surface edges or discontinuities. Curved

three-dimensional bodies can be modeled as composites of

surface patches, joined at space curves (York 1979).

The representation utilized here involves planar

surfaces at orthogonal orientations within the viewing

geometry. Although this representation does not

accurately reflect the nature of real surfaces, our

premise is that it is sufficient for recognizing objects

at a distance. The size dimensions of height, width, and
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depth of a telephone pole, or a tree can be approximated

reasonably well if the objects are represented as

rectangular solids.

The surface interpretation process involves the

combination of static image analysis and the analysis of

image dynamics. A surface interpretation is first

hypothesized on the basis of a coarse static analysis.

Then, this interpretation is used as an initial scene

model to predict image dynamic . The model is refined on

the basis of the agreement between image dynamics and the

model. An image taken at one location is transformed

into a synthetic image of the scene as it would be viewed

from another location, given the scene model. This

synthesis accounts for point displacements and occlusion

effects as predicted by the surface model. Differences

between the real and the predicted images are then used

as an error measure in a search that refines the surface

model (see figure 3).

Once the model is refined, unresolved difference

values are detected wherever two-dimensional image

dynamics disagree with the three-dimensional surface

model. Thus, errors in the initial segmentation of the

image into surfaces would be detected by these difference
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values. The initial surface model can be corrected by

resegmenting the image into new surfaces which better

account for the image dynamics.

This hypothesize-test process could be used to

refine the orientation, distance and curvature of each

surface which is hypothesized. Such a process would be

computationally expensive and its results too detailed

for many purposes. We simplify by assuming that all

surfaces are planar and oriented in either of two

directions.

The two-orientation representation is not an

inherent system limitation, but rather an efficient means

for deriving a surface model that has sufficient detail

to interpret the positions and identities of objects in

our test scenes. The two orientations chosen are

parallel to the ground plane, which we call "horizontal",

and parallel to the image plane, which we call

"vertical". The road, grass, and soil are all oriented

in the ground plane. All other objects can be

approximated by flat surfaces parallel to the image

plane, for in our scene no objects (other than the

horizontal ones) have large depth disparities across

them. For images with a long planar surface, such as the

.. . ... . .. . . . . . .. ... . .
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wall of a building parallel to the direction of travel,

this two-orientation representation would need to be

extended to three orientations.

1.5 Object Interpretation

The term "object" carries many meanings. We refer

to the items in the scene that are physically separate

entities as objects. Trees, telephone poles, signs,

people, the sky, and the road are all examples of

objects. Except for the sky, the objects that we deal

with are solid, and usually touch one another for

support. Transparent objects do not appear in the images

and there is no mechanism for dealing with the appearance

of several objects in the same image location.

Within our definitions, the interpretation of

natural outdoor images culminates in an understanding of

the spatial layout and identity of objects in the scene.

To determine identity, systems must match the size and

color of objects detected in the image to the size and

color associated with the stored concepts of known

objects.

.1
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In static scene analysis systems, various techniques

are applied, each with its assumptions about the scene,

to obtain object size from static image features. With

the assumption of an accurately modeled ground plane and

an assumption of the orientation of a given surface, the

size and distance to that surface can be determined

directly. Alternatively, if there is prior knowledge of

the expected position or size of the objects appearing it

is possible to use matching techniques to directly obtain

spatial relationships.

We chose to avoid implementing a system requiring

the extensive use of knowledge which is specific to the

particular scene. Thus, our approach is to use

information from the image, in a bottom-up fashion, to

produce a description of the scene in terms of surfaces.

The surface description is then used, again bottom-up, to

derive an object interpretation.

- ,. ,; ;- 2 2. ,.. . .. , .... iil ...... .. .. I I I I



CHAPTER II

REVIEW OF SCENE ANALYSIS

This chapter reviewes the field of scene analysis.

First, some concepts are described which are used in the

analysis of images. Then, the problems involved in

computer interpretation of images are briefly examined.

This is followed with a review of the literature

pertaining to the analysis of static images. The final

section deals with the issues and the literature

pertaining to the analysis of dynamic images. The reader

is directed to section I.4 if he is knowledgable of the

static scene analysis problems and literature.

II.1 The Elements of Scene Analysis

Scene analysis is a field of study aimed at

automatic interpretation of images of scenes. Although

the techniques are as varied as the domains of

application, there are certain elements common to all

scene analysis systems. These elements are 1) a scene,

2) a sensor, 3) an image, 4) extracted features, 5)

aggregations of features often called image

segmentations, and 6) an interpretation. In each scene

analysis system these elements and the interactions

14
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between them are tailored to meet specific goals. We

begin by describing the elements, and follow by examining

the way they interact in several systems.

II.1.1 Sensor. The device that records information from

a scene is called a sensor. Sensors are transducers that

convert scene illumination into another form of energy

(usually electrical) that can be measured. A camera is

employed to image (form a projection of) the light flux

present at some point in a scene. The transduction takes

place in the photographic emulsion if a fil. camera is

used, or in the photo-sensitive target if a television

camera is used. The corresponding subsystem in the human

visual system is the eye where the light flux that

impinges on the retina causes electro-chemical activity.

Some scene analysis systems are designed to

integrate active as well as passive sensor information.

Active sensors are coupled with their own illuminators so

that the nature of the signal being sensed is known,

while passive sensors record illumination that exists

naturally in the environment. The use of radar

range-fic-ding in the application of military target

interpretation, laser range-finders for scene analysis

(Duda 1979), and the use of ultrasound imaging systems

.1
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for non-invasive medical applications are all expamples

where surface distance information is available directly

from an active sensor. Our goal is to derive surface

information from a passive sensor - a moving camera -

that records light flux as it occurs in a natural daytime

environment.

11.1.2 Image. An image i-3 a projection of reflected

scene illumination onto a surface. We deal with existing

light flux and flat image planes in our system. Systems

have been designed that make use of other illuminants

such as radar waves and infrared light, and other

projection surfaces, such as spherical (Badler 1976). We

record our images and usually refer to an image as an

entity that exists now, although it was recorded in the

past. A moving image is recorded as temporally disparate

frames, each considered a separate image with an

associated time index.

To facilitate computer processing, images are

quantized in a regular array. Various patterns, such as

hexagonal and rectangular arrays have been used, but for

our work the more common square array has been adopted.

Each unit square is an element of an array and is given a

value that is the average of sensor values within the

r. . .
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boundaries of the element. These picture elements are

called pixels, and are often refered to as image points.

Temporal quantization occurs in a moving image

recording system. We use movie frames that are recorded

at 18 frames per second, and select for analysis frames

that are nine apart in the sequence, resulting in an

effective frame rate of two per second (see figure 4).

11.1.3 Features. A feature is some abstraction of image

information indicating points or areas of significance.

Features vary in complexity and ui.efulness (Bullock 1974)

and, therefore, are selected for each domain of

application in scene analysis. The majority of scene

analysis features fall into the categories of "point",

"edge", or "texture".

Point features are those which can be derived from

the information available at one pixel. In monochromatic

images the only point feature is intensity. In

multi-spectral images, various color features can be

computed from the red, green, and blue values that are

typically recorded at each pixel.

!.
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Edge features are the result of inter-pixel

differencing. These features are consistent with the

observation that important scene information can be

conveyed by simple line drawings (Attneave 1954).

Typically, the average of point values from two adjacent

areas are compared (see figure 5). We call the

difference between these two averages the "response" of

the edge operator. When the difference exceeds some

threshold, an edge is placed between the two areas.

Alternatively, a confidence of "edgeness" can be assigned

to a short line segment placed between the two areas.

Texture features are typically either statistical or

geometrical abstractions of areas of the intensity image.

We are only concerned with the use of texture for the

recognition of objects. The use of simplified texture

features for this purpose is presented in chapter V.

Point features, such as color and intensity, are

alone insufficient to provide an interpretation of a

scene. According to one line of reasoning (Bullock

1977), point features are highly variant with respect to

object models because of lighting conditions, whereas the

shape of connected edges is a more useful and invariant

feature for eventual interpretation. We agree that
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point feature edgo feature

image image

response A - B

Figure 5. A simple edge feature might be the difference

two adjacent 2 x 2 areas.
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features that are used for interpretation must be

invariant, but only with respect to the particular

interpretations performed. Problems with the use of edge

features for motion analysis will be addressed at the end

of this chapter.

11.1.4 Aggregations of features. Features are usually

aggregated into abstractions that serve to segment the

image into meaningful areas. In scene analysis these

aggregations involve regions, corresponding to areas of

points which are similar in some feature; line segments,

corresponding to boundaries between areas that are

dissimilar with respect to some feature(s); and

vertices, corresponding to the junction of line segments

(Hanson 1976). The result of aggregation is an image

which is partitioned into regions. We call a partitioned

image a "segmentation" (see figure 6).

This intermediate-level image description is

intended to provide an interpretation subsystem with

information that can be readily compared with object

models. Our system relies on regions (the aggregated

point feature), to define localities in which

interpretation processes act.

t
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11.1.5 Interpretation. Interpretation refers to the

derivation of a description of the scene in terms of the

identity and position of objects that appear in an image.

Scene analysis systems vary considerably as to what their

interpretations will consist of, and in what domains they

are applicable. Some schemes are designed to examine a

novel approach to the application of knowledge in a an

artificial intelligence problem (Freuder 1973), while

others are intended to understand arbitrary outdoor

scenes containing any of numerous possible objects

(Hanson 1978, Ohlander 1975).

Interpretation processes use object models,

aggregated features and a matching strategy to derive

identities and spatial relationships of scene objects.

Various matching systems and strategies have been

explored, and are briefly examined below (section 11.3).

Object identity can be derived by matching color and

texture features of regions with models of objects stored

in terms of those features. This technique is applicable

for objects that are relatively invariant in color and

texture, such as the sky, trees and grass. Other

features, such as line segments and vertices (Roberts

1965, Waltz 1972) or shape (York 1980), are used in the

i
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matching process when objects can be identified by these

characteristics.

The identification of objects is often enhanced by

first interpreting the scene in terms of the disposition

of scene surfaces. Three-dimensional characteristics of

objects can then be used in the matching process (Marr

1977 ). A model of the scene in terms of surfaces seems

a natural intermediate interpretation that bridges the

gap between image features and object identification.

This intermediate description is called a surface

interpretation.

11.2 Problems in Static Scene Analysis

Obviously, the extraction of image areas that

correspond to separate objects can be based on

differences in depth (Duda 1979). Unfortunately, no

feature of a static image is guaranteed to indicate

discontinuities in depth. Point and edge features can

indicate discontinuities in intensity and color that

arise from several phenomena which are unrelated to

differences in depth.

• _ .1
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Scene analysis systems are effective because

discontinuities in depth are very often associated with

other scene differences that give rise to intensity

differences (Gibson 1950). Static scene analysis, until

recently, had ignored this fact and still achieved

acceptable levels of performance (Hanson 1978b, Bullock

1978, Levine 1978). The reader is refered to (Barrow

1978) and (Horn 1970, Horn 1977) for a more comprehensive

description of the relationship between scene

characteristics and image intensities than that presented

below.

The intensity values recorded from an image are the

result of three scene-dependent factors. They are 1) the

magnitude of illumination falling on the imaged scene, 2)

the type of material composing each surface of the scene,

and 3) the orientation of each surface relative tc the

viewer and light sources. We refer to these three

characteristics of the scene as the illumination,

reflectance , and orientation respectively. See figure 7

for examples of these differences.

The illumination in a natural outdoor scene comes

from three sources. They are the direct rays from the

iun, the omnidirectional (diffuse) light from the sky,

I
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and reflected light from other objects.

Differences in the amount of illumination are mostly

accounted for by shadowing of direct sunlight. Shadowing

of sky light and reflected illumination does not play as

important a role as illumination differences in our

scenes, although in some situations these effects are

visible.

Differences in reflectance are due to the

composition of the material where the light impinges.

Surface reflectance characteristics are determined by the

molecular structure near the surface of the object. This

property provides the rich variety of coloration in 4

images of natural scenes. It is responsible for the

greenness of grass and leaves, for the contrast between

the background of a sign and its message, and for the

clarity of a dash painted on a road. Static scene

analysis systems derive their interpretations primarily

(although not entirely) through differences in

reflectance.

Differences in the orientation of a surface with

respect to the camera and illuminating source create

differences in imaged intensity (Horn 1970). The

formulation of the percentage of the light that is

4l
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reflected depends on the reflectance characteristic.

Metallic surfaces tend ta reflect most of the impinging

light in one direction while matte surfaces reflect light

evenly in all directions. For any surface of constant

reflectance the image will be of constant intensity where

the orientation is constant. If a surface is curved its

orientation varies. For most surface reflectance

characteristics, a variation in orientation will produce

a variation in imaged intensity values.

Orientation differences are responsible for some of

the fine textures of trees and grass because the leaves

are at a variety of orientations. This characteristic

also accounts for the intensity gradient across cylinders

(such as telephone poles) and for the highlights imaged

from metallic and glossy painted surfaces as found on

automobiles.

Segmentation algorithms are generally capable of

detecting all intensity and color differences in images,

but are not capable of distinguishing one source of

difference from another. A possible exception is the

work being done by Barrow and Tenenbaum (Barrow 1978)

where, in restricted domains, it appears possible to

determine depth discontinuity.
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Some researchers have found it beneficial to err on

the side of excessive segmentation and allow some

interpretive process to decide what regions must be

merged, or what line segments must be ignored, in order

to compose a depth segmentation. Our system provides an

answer to this scene analysis problem by merging and

splitting regions based on their behavior over time.

11.3 Static Scene Analysis Systems

In this section, we discuss a few static monocular

systems which are primarily aimed at interpreting natural

scenes. Several theoretical scene analysis systems, and

several that have been implemented are discussed. The

systems are presented in categories, and are followed by

a summary.

11.3.1 Theoretical visual systems. Marr proposes that

there are three stages of visual processing, that each

stage has a related representational structure, and that

these structures must be understood before algorithms

should be implemented to perform general visual tasks

(Marr 1977). Once these representations are understood,

the computational problems (hardware and software) can be

devised and a resulting general purpose visual system can

be realized.
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The application of top-down design by Marr coincides

with hierarchical decomposition (Simon 1969). Marr

points out that the structure of a representation is

determined both by the form of the information given to

each process and the form that each process is expected

to produce. Thus, at each stage of problem decomposition

the interaction between modules of processing activity

must be expressed in some representation.

Marr shows that the approach taken in some scene

analysis systems to segment an image is missguided. In

order to segment an image into objects, a system must

employ knowledge about the particular scene. No clear

way exists to choose what knowledge should be applied to

produce segmentations.

The proposed solution is a three-stage system where

1) intensity and geometry of the image are used to

produce a "primal sketch", 2) the sketch is processed

into a representation called the "2 1/2 D Sketch", and

3) the 2 1/2 D Sketch is used to produce and recognize

object-centered three-dimensional descriptions. These

three stages correspond roughly to 1) both feature

extraction and feature aggregation, 2) the production of

a surface interpretation, and 3) an object identity and



!

31

shape understanding interpretation.

In the "primal sketch" intensity discontinuities are

gathered together and significant lines, edges, and their

spatial relations are represented. Most scene analysis

systems refer to this type of representation as a

segmentation.

The "2 1/2 D Sketch" is free of identities of

objects and therefore does not require specialized

knowledge about particular objects. The shape and

position of the surfaces (depth and orientation) are made

explicit at this intermediate level. Because surface

orientation and depth can be used to describe arbitrary

shapes, this is an ideal level of representation that

lies between segmentation and object understanding.

The third stage of processing results in the

interpretation of the scene as a composition of objects.

Each object is described in terms of its shape and

disposition with respect to the camera. This third stage

of processing results in the identification of objects,

and fits our description of the term "interpretation".

1
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Didday and Arbib developed a visual system model

that explains perceptual aspects of animal behavior

(Didday 1973). In this system, a model of the current

world sit';ation (commonly refered to as "short term

memory") is built from stimulus input and associations

that can be drawn from stored experiences ("long term

memory").

Didday and Arbib's work support the use of a dual

visual system employing both peripheral and foveal

components. The peripheral subsystem is responsible for

discovering unexpected change. The foveal subsystem is

steered to investigate areas of the visual field that

demand attention by the resolution of competition between

unresolved elements in the representation and the

unexpected changes in the periphery. Through this

construct, the goals of the percei facilitate

perception of scene components required for survival by

influencing the appropriate action-oriented elements of

the internal representation.
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11.3.2 General vs. specialized systems. As we make the

transition from theoretical visual systems to implemented

systems that embody limited amounts of generality, we

should consider the trade-offs between general and

specialized systems.

Many successes in scene analysis have been in very

limited or specialized areas where ad hoe structures and

processes have delivered good results. Such systems are

noticeably rigid in their implementation, cannot be

easily reformulated to act in other domains, and do not

offer the research field much understanding of how to

solve general vision problems. Bullock shows that the

designs of general systems are sophisticated, and in

order to accomplish a wide variety of tasks they are

sub-optimal in solving any one task (Bullock 1978). He

describes three types of general vision systems called

matching, cueing, and interpretation. Basically, all

three types derive an intermediate representation through

feature analysis, and then by matching the intermediate

representation with stored object models, the name,

location, and identities of objects are derived.

1
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Rather than a goal of generality in vision systems,

Bullock argues for flexible configurations of specialized

subsystems that closely match their domains and achieve

optimal solutions. Hopefully, such an approach will

result in systems that have more speed and accuracy, and

are more practical to construct than general systems.

We have limited this review to some of the

literature that is aimed at interpreting images of

natural scenes in terms of the objects that appear. Most

systems use some form of image segmentation as an

intermediate structure. The identity of objects is

either derived from the segmentation, the segmentation is

derived from the object models, or the segmentation

directs the application of verification programs that

confirm identities from the image data directly. System

design differences should then be viewed as differences

in the methods that bring together semantics (object

models) and syntax (image and feature values) image

interpretation.

11.3.3 Blocks world scenes. Roberts designed and

implemented a system which attempted to automatically

locate and identify objects from image information

(Roberts 1965). His work pioneered the field of computer
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image understanding. The task domain was indoor scenes

of blocks (a small set of polyhedra), and the goal was to

locate and identify the block types.

In the first of a two stage process (see figure 8),

spatial discontinuities of intensities were located in

the image. These discontinuities in intensity were

assumed to be caused by the boundaries of surfaces in the

scene. Thus, the lines formed by simple inter-pixel

intensity differencing were likened to a line drawing of

the object.

Then, a set of three-dimensional atomic object

models were compared with the lines extracted from the

image. A suitable match was sufficient for the

recognition of the object. Although the system correctly

identified objects in many cases, it performed poorly in

others. Problems occurred where shadows, missing lines,

and strong intensity gradients were present.

Eventually this work was extended in two important

ways by others (Shirai 1973, Wa.ltz 1972). By including

shadows as part of the model of the objects, and also by

improved line extraction, these latter systems became

very good at recognizing polyhedral scenes. Although it

is not clear that this approach can be extended into the

1
I
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non-polyhedral world, early research systems did

demonstrate the application of object model information

to the image understanding problem.

11.3.4 Real world scenes. Yakimovsky and Feldman

(Yakimovsky 1973), and Tenenbaum and Barrow (Tenenbaum

1973 and 1976), have integrated the interpretation and

the segmentation processes (see figure 9). These scene

analysis systems contain information in the wor'd model

that is used to permit or block the joining of pixels

into regions. Through a succession of pixel joinings,

the image is segmented into objects, where object

identification is based on color and image position. The

world model is in the form of likelihoods of adjacency

between all pairs of objects.

Yakimovsky's segmentation proceeds by joining pixels

and regions through a decision tree analysis, while

Tenenbaum's process uses an iterative technique that

makes a partial interpretation and suggests joins (or

blocks the joining process) between pairs of regions.

Through the use of heuristics, both systems attempt to

derive a segmentation that reflects the maximum

likelihood decisions for the image, based on properties

of objects and a priori probabilities for the set of

I ,t
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objects in the domain. Unfortunately, it is not always

possible to obtain adjacency probabilities for the set of

all objects in the domain. Also, it is not clear that

adjacency in the image plane is a good measure for scene

domains in which objects are likely to appear anywhere.

These systems show that top-down analysis is

possible, where a model is used to "find" the best

segmentation of the scene (directly in terms of objects).

As Marr points out, the segmentation of the image

directly into objects is only possible when specialized

knowledge can be brought to bear (Marr 1977).

Tenenbaum and Barrow found it inappropriate to

consider segmentation and interpretation as distinct

processes (Tenenbaum 1975). They supported this with the

observation that data directed (bottom-up) processing

maintains analyses that depict the actual scene, but run

into a bottle-neck of having too many possibilities to

consider for interpretation (Barrow 1975). Processing

which is entirely goal-directed (top-down) considers only

the relevant possiblities, ignoring the unexpected, and

produces results that do not depict the scene faithfully.

They conclude that a combination of top-down and

bottom-up processing is a good solution, but at that time
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very little experimentation with such a paradigm had been

done. In more recent work they discuss a framework for

first generating a surface segmentation directly from

image information before proceeding to interpret or name

objects (Barrow 1978).

11.3.5 Query-directed systems. Several scene analysis

systems that rely heavily on goal-directed analysis, or

top-down processing, have been proposed and successfully

implemented. Object or scene models are used to discover

instances of objects, either directly in the image, or

through an intermediate symbolic structure.

Garvey designed a system that finds particular

objects in images when asked to do so (Garvey 1976) (see

figure 10). When queried about an object, such as a

chair in an office scene, the system produces a cost

effective sequence of tests called a "strategy". The

tests determine the existence and position of the object

in the image. Advantages of this system are its ability

to form' iate strategies according to the goals of the

user, and the ease with ,ihich new objects and object

characteristics could be added. This system demonstrates

the "test" step of a hypothesize-test paradigm. Once the

human hypothesizes an object, Garvey shows that there is

-I
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a method for preparing an optimal strategy for locating

an instance of it.

Bajcsy and Lieberman use a model of objects and

expected context to direct the analysis of natural

outdoor scenes (Bajcsy 1974). First, the scene is

segmented into regions based on inter-pixel similarity of

color. Then, a strategy that uses a semantic network as

a model of outdoor scenes locates the objects. The order

of tests that the strategy applies is fixed.

This work is perhaps the first report of success at

using object model information stored in a semantic

network for top-down outdoor scene analysis. A more

recent paper by Rosenthal and Bajcsy (Rosenthal 1978)

proposes a structure for linking abstraction levels of a

semantic network to resolution levels of an image so that

queries about satellite images can be answered. They

posit that, regardless of a choice of control structure,

a hierarchy of visual knowledge is necessary to recognize

objects in a context. In this system a query generates a

sequence of objects to be identified before the queried

object is located. Thus, a context of objects is

generated. The identification sequence is derived from a

hierarchy of objects that relate object size to
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resolution of the image. Starting at the largest object

first (coarsest resolution), the queried object is

quickly located.

Although this technique of relating object size to

image resolution is effective in satellite images, it is

of doubtful utility in terrestrial images. Perhaps the

sky and ground could be extracted at a coarse level, and

all other objects at a finer level. We find that the use

of partitioned semantic networks, where levels of

abstraction form a hierarchy of visual knowledge is

appealing as a structure for storing a priori information

(see chapter V). Partitioning by abstraction level

rather than resolution level condenses information that

has similar use into identifiable areas, and allows a

clear description of the relationships between elements

of different abstraction levels (Williams 1977).

However, we do believe that there is a need to understand

the appearance of objects at different distances, and

this can relate to image resolution.

Ballard, Brown and Feldman outline a method for

developing a goal-directed vision system, where prior

knowledge is used to guide the extraction of image

descriptions (Ballard 1978). They use an intermediate
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level called a "sketchmap" where a symbolic structure is

built during analysis. This structure associates image

elements with model elements, thus producing an

interpretation. The model is a graph in which model

nodes represent objects, and arcs between the nodes

represent conditions where a relation holds. Also,

procedures are described that instantiate model nodes

into the sketchmap.

This system has been shown useful for answering

queries in diversified areas of scene analysis, such as

finding docked ships in aerial photos, and ribs in very

noisy x-ray images. This intermediate structure lacks

the surface level of abstraction that is necessary for

general visual problems in outdoor scene analysis. The

sketchmap is an instantiation of model information that

can answer questions about an image. To make such a

system general-purpose we would suggest that the first

question should be "Describe all the surfaces in the

scene.", and should be followed by, "Where are the

objects?", and "What are their identities?".

11.3.6 General-purpose systems. Bullock describes

general-purpose computer vision systems as they are

applied to outdoor images (Bullock 1976a and 1976b). One

I7
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of the goals is to derive useful information from scenes,

such as the identity, position, and description of

objects. To produce results, a simplified implementation

of a general design was used. In it a perfect model of

each object is used, and only one object is found at a

time. The system consisted of a matcher that compares

models extracted from a sensor image with models

extracted from a goal image. Thus, two intermediate

structures are compared (see figure 11).

Considerable effort was expended in the selection of

appropriate features for the model. It was shown that

simple features, calculated on image data points, such as

intensity, were easy to compute, but highly variable when

objects were moved or lighting conditions changed.

Global features that depict connected boundaries are very

difficult to compute but are highly invariant for a given

object. Features were chosen that fall between the two

extremes, and their geometric relationships were used as

a representation for comparison.

This system did not abstract surface models from

images before proceeding to match against stored object

information. It relies on the pre-specification of

medium complexity features (edges) for the objects of

.-..
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interest. Although this approach works for certain

objects and scenes, we feel that a matching process that

relies on edge features can easily be overloaded by the

myriad of edges and textures that are common to images of

natural scenes.

In an evolving system called VISIONS, Hanson,

Riseman and Williams (Hanson 1975, 1976, 1978a and 1978b,

Riseman 1977, Williams 1977b) present a two stage

approach to computer interpretation of images from

outdoor scenes (see figure 12).

In the first stage, the image is segmented either by

region or edge analysis. In region analysis adjacent

pixels that have similar point features (Nagin 1979) are

joined together. In contrast, edge analysis identifies

dissimilarities in features of adjacent pixels, and

collects them into region boundaries (Prager 1979, Hanson

1980).

The result of the first stage of processing is an

image segmentation, coded into a graph structure. This

graph is topologically similar to the regions, line

segments, and vertices as they appear in the

segmentation. Each region, segment, and vertex is

represented by a node, and the nodes are connected by

Ilm
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arcs that relate the regions to their bounding segments,

and the segments to their common vertices. Values

associated with the nodes in the graph describe

attributes of the regions and line segments. Color,

area, and centroid are examples of region attributes, and

contrast and length are examples of line segment

attributes.

The segmentation does not correspond to a surface

interpretation. It serves as an intermediate structure

in which there is a high degree of correspondence between

some of the line segments and real surface boundaries,

and therefore, also between regions and surfaces.

The second stage of the process is designed to

interpret the segmentation in terms of surfaces, objects,

and collections of objects. The problem of

interpretation is divided into three components. They

are the knowledge base, the processes that act on the

knowledge base, and the strategy which applies the

processes.

More recent activity in the VISIONS group (Riseman

1980) include the matching of three dimensional models to

segmentations, and the inclusion of a feedback path,

whereby partially instantiated interpretations can

,,
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influence the segmentation process.

The system presented in this thesis uses portions of

the VISIONS system. The segmentation process is used to

generate an initial model as described in chapter III.

The object interpretation process uses the same structure

as VISIONS and implements two processes in that

structure. Chapter V details the object interpretation

subsystem, examining both the data structure and the

processes.

11.3.7 Static scene analysis summary. Static scene

analysis systems that are intended to function on images

of real outdoor scenes have at least one major problem to

solve. That problem is the generation of a surface

interpretation while making as few a priori assumptions

about the scene as possible. On the path toward this

goal various systems have been developed. They have been

used to explore the application of pre-specified

knowledge about the expected scenes. Few have attempted

to build general purpose systems, but those who have show

a multi-stage system that makes use of information both

bottom-up (from the image to descriptions) and top-down

(from the descriptions to the image).
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11.4 Moving. Imae Analysis Systems

Many moving image analyses have been aimed at

solving the correspondence problem, i.e., to determine

the displacement of imaged scene points between two

views. These analyses are usually applied in domains

where all image points from any single object show motion

components in a plane parallel to the image, such as

cloud movements as viewed from a weather satellite. In

other research, three-dimensional motion is analysed, but

in very few scenarios is the camera in motion.

One important aspect of camera motion is occlusion.

An observer, viewing a movie of our scene, can identify

places in the scene where objects occlude one another.

Occlusion is caused by the presence of a nearer object

between the viewer and a more distant object.

The effect of occlusion in moving images has

received attention in image analysis because many motion

understanding systems employ correspondence techniques.

The problem is that inter-image differences due to motion

(displacement of an image component) must be

distinguished from inter-image differences that are

caused by occlusion and "disocclusion" of scene surfaces

(see figure 13). In this figure the lack of correct



52

image pair I image pair 2 image pair 3

0-46.

Figure 13. This figure represents the failure of a
correspondence system during occlusion. The image
pairs indicate solid outlines for the to image and
dashed outlines for the t1 image. The object is being
occluded as it passes behind a vertically oriented
(invisible) object. In the correspondences, arrows
signify corresponding points that would be discovered
if verticies were being matched. Circled dots represent
points visible in only one image for which only
incorrect matches can he found.
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inter-image matches is created by the effect of

occlusion. As we discuss the motion analysis techniques,

the effect of occlusion in each case will become

apparent.

We will briefly examine moving image analysis as a

research area divided into four sub-areas, according to

the types of analysis performed. The sub-areas chosen

are vector field, tracking, predictive modeling, and

relaxation analyses. This examination is followed by a

summary of the salient attributes of these systems as

they apply to the determination of depth in the complex

domain of moving images from real world scenes.

11.4.1 Vector field techniques. In vector field

analysis, the origins of vectors are fixed (one each) to

a number of points in the first image (see figure 14).

The goal is to discover the end points so that each

vector represents the spatial displacement of a local

image feature between the first and second image (Ullman

1978). This discovery process is usually automated by a

search that relies on a similarity measure (also called a

"matching function" (Burt 1976)).

I
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Figure 14. Vector field analyses solve

the correspondence problem by treating

the displacements as a field of vectors.
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The resulting field of displacements can be analysed

(with respect to a camera model) to infer the existence

of rigid bodies, and in some cases a three-dimensional

representation is derived. Gibson (Gibson 1966) calls

the fields "optic flow", and Lee (Lee 1974), Cloksin

(Cloksin 1978) and Prager (Prager 1979) demonstrate some

characteristics of the field that determine depth.

In strictly bottom-up applications, the vector which

describes the displacement of a point can have any

direction and amplitude. In some applications,

constraints on the motion of scene points is available

from knowledge of either the approximate disposition of

scene surfaces, or the camera displacement (direction and

magnitude of camera motion) between frames. Constraints

on point displacements result in a restricted area of the

image over which the search for a match needs to be

conducted. p

Quam pursued a change detection technique using

correlation to achieve registration of a pair of images

as taken from a satellite (Quam 1971). The registration

was modeled as a set of polynomial functions. These

functions were modified so that they would match the

field of vectors obtained from a set of cross-correlation

I
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measures. The original specification of the functions

requires knowledge of the camera positions and the

curvature of the object (the planet being photographed).

Although this system was not intended to model motion, it

does relate a three-dimensional model to points in an

image pair.

Quam and Hannah demonstrate a system that

automatically determines depth from pairs of satellite

photographs of Mars (Quam 1974). With assumptions of

little change in range or sun angle between the pair of

photographs, the images of corresponding scene points are

compared by using a cross-correlation measure. A model

of the depth is computed from the resulting

displacements. The model is displayed as a contour map

of the planet's surface.

C. Thompson (Thompson 1975) improves the correlation

technique of Hannah (Hannah 1974) by using some criteria

for acceptance of a correlation match. Two of these

criteria are tests which can reject many false matches.

They are based both on similarity of variance between the

areas surrounding the matched points in each image, and

on the similarity of the correlation peak (between the

two images) and the autocorrelation peak in the first

V
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image. An autocorrelation array of values is obtained by

cross-correlating the first image area with itself. The

second test is equivalent to the question: is the match

value obtained equal to the one obtained when the area is

matched with itself? Furthermore, Thompson suggests a

local search around the correlation peak to improve

resolution of displacement.

Thompson then deals with objects that change in size

or shape between the images, a phenomenon he terms

"perspective distortion", i.e., the effect of

three-dimensional translation of the object. If the

angle of a surface (relative to the camera position) is

known, then the search for a match between image points

that lie on the surface can be directed according to an

expected displacement. Thus, a reduction in search

effort is possible if the surface orientation is known

beforehand.

Nevatia shows that correlation can be used in a

succession of movie frames (Nevatia 1976) to determine

depth. The scene contains one object - a cup that is

covered with dark wrinkled paper. An "interest"

predicate chooses windows that are good candidates for

correlation matching. Rather than computing the
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correlation coefficient, he uses the mean square

difference which was computationally more efficient, and

produced adequate results.

The search for a match can be reduced by having a

model of the camera-object motion between images.

Because Nevatia used a single rotating object, all points

move along curves in the images (see figure 15). By

searching in the vicinity of these curves, the

correspondence is quickly found. Integer (pixel)

displacements are found between successive views, and the

path of the point is interpolated across the sequence by

fitting a hyperbolic are. A three-dimensional model is

then inferred for the points on the object that the

interest predicate selected.

W. Thompson has recently demonstrated a system for

segmenting an image pair based on contrast and motion

(Thompson 1979). By using a technique developed by Limb

and Murphy (Limb 1975) which was designed to reduce

television data bandwidth, Thompson derives motion

estimates from intensity gradient information. The

spatial slope of intensity is measured around a point in

one image, and the value of intensity at the same point

in the second image is recorded (see figure 16). The
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image motion search areas

Figure 15. Because Nevatia had a model of
the motion of the object, he could predict
the approximate displacement area for matching.
The square areas were searched for in the

adjacent curved areas in the succeding frame.
The object was an inverted cup with wrinkled
paper covering its surface.

i [ ,

' I !"

;j. m

IJ



- 601
tot

image t0  dl~

-P

It0  dx~

- intensltx
VS. x

xL

position ~

to  SS~dto

image t

intensity
VS. x

X I

j dx.

Figure 16. W. Thompson derived estimates for the
motion of each point. First, the slope of intensity
in the first image was measured around the point and
the intensity value is recorded. Then the xpected

x . t
1

-(I[0
- 1.1) dx 0

displacement is computed: dxtl= 1 1

3 dlt0



I

61

j spatial displacement that places the second intensity

value on the intensity slope of the first image is used

as a local displacement estimate.

A set of global displacement estimates is then

formed by cullecting the local estimates in a Hough

transform. Peaks in the transform space correspond to

frequently occurring motion vectors, i.e., image areas

that move together. Each local estimate is then replaced

by the global estimate which it most closely matches.

The resulting vector field is then used in the

segmentation process.

The segmentation process first considers areas of

strong gradient to form regions, under the assumption the

image edges often correspond to surface edges. Then

adjacent regions containing similar displacement vectors

are merged, and any region covering different

displacements can be split. After splitting Pnd merging,

a final segmentation is formed.

An advantage to this bottom-up system is that it

does not perform a search, either locally or globally.

Also, this system responds to both static and dynamic

pictorial cues, perhaps easing the incorporation of its

techniques into existing static analysis systems.

I
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Unfortunately, the process of identifying sets of

points as separate objects, based on the similarity of

their displacement vectors, rules out the possibility of

arbitrary motion. With the camera in motion,

displacements of image points from a single surface

generally vary in both amplitude and direction.

Additionally, with multiple objects there are likely to

be many objects with similar, perhaps overlapping,

distributions of displacement vectors.

II.4.2 Tracking techniques. Jain and Nagel demonstrate a

system for extracting moving objects from television

images when the camera is stationary (Jain 1978). The

scene used is a street corner as viewed from above, and

the moving objects are automobiles and pedestrians. The

system does not have any prior knowledge of the type of

scene or any models of objects.

This system first measures statistics of the

intensity values across a pair of images. Then,

inter-image differences of these statistics show areas of

occlusion and disocclusion, and hence, the leading and

trailing edges of all moving objects (see figure 17).

These moving edges are used to compute the velocity and

size of the moving objects. If the system is given
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dfferencing talnat t

Figure 17. Differencing technique used by Nagel for
moving object extraction

I
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enough frames of the sequence (so that all moving objects

travel at least their length) it can automatically remove

the moving objects from one frame to produce a reference

image of only the stationary scene components.

In another work extending this technique, Dreschler

and Nagel extract the moving portion of television images

where the camera is stationary (Dreschler 1978). Regions

are produced by pointwise intensity differences between a

pair of frames. These regions are then hypothesized as

objects. A set of features is measured across each

region to define a vector in multi-dimensional feature

space. Because the features of an object change little

between successive frames, a cluster of vectors is formed

by one object from a sequence of images. These clusters

are found through a minimal spanning tree search. Any

particular object can then be found in each frame by

mapping back from feature space to the images.

Radig demonstrates a region matching technique for

tracking and describing moving objects in the same

scenario (a stationary background) (Radig 1978).

Features that represent the intensity value and the

gradient of intensities are measured in each frame.

These features are collected into regions of similarity

......................................
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and compared with other regions in the preceeding and

succeeding frames. Comparisons of these features

effectively match the regions' internal structure when

linking together regions through time.

Milgram developes a technique that tracks the moving

image of military targets as they appear in infra-red

images (Milgram 1977). In this domain, a threshold of

the image is sufficient to separate the target from the

background. The selection of the threshold is automated

by searching for that threshold in each image which

produces the most consistent match of the target size,

shape, and expected position. A dynamic programming

approach is employed for the search phase.

Price solves change detection problems in image

pairs from a variety of scenes (Price 1976). The

technique first segments both images independently, and

then matches regions based on the similarity of their

features. Adjacency of other regions influences the

match prccess (see figure 18). The system is

demonstrated on images from aerial and terrestrial

scenes, as well as radar images.

.. ... ..... .,I
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This symbolic matching technique is capable of

finding correspondence of reions where there are many

regions in each image. Changes in camera position, or in

the positions of an object could be handled easily, and

mis-matches of large regions were infrequent. The

technique was shown to be faster than cross-correlation

and better than image differencing techniques for the

problem of change detection.

Let us consider the utility of several of the

techniques in our problem of motion analysis. From the

work on tracking we see that simple inter-image

differencing techniques are adequate for detecting moving

portions of images. When the camera is moving through

the environment however, all portions of the image,

except for very distant objects, are in motion.

Thresholding was discarded as a surface or object

extraction method in this thesis because, in real world

scenes, simple thresholding does not extract object

boundaries. We do employ a version of tracking that

corrects for errors in our system by forming regions from

difference images. This is explained in chapter III,

section 11!.2.5.
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Comparison of two segmentations is probably not a

suitable method for motion analysis. Small regions

change very rapidly between images of real terrestrial

scenes. They are quite often near the edges of surfaces

where resolution of displacement is most critical. If

small regions are not collected into the surfaces they

are expected to represent, then measurement of region

displacement is grossly inaccurate and, thus, inadequate

for determination of depth.

II.43 Predictive modeling. Martin and Aggarwal examine

several dynamic scene analysis systems, and demonstrate a

system that extracts objects from images of scenes where

the objects display motion in a plane parallel to the

image (Martin 1977). This system attacks the problem of

modeling objects where considerable occlusion is taking

place.

To handle occlusion, a predictive model is

generated. This model is formed from the boundaries in

the binary images that are given to the system as input.

Descriptions of the boundaries are matched between frames

to produce a voctor field, and those vectors that cluster

together are d umed to belong to a single object. Once

". model of objects is formed, the search for
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correspondence of boundaries in successive frames is

reduced through the model's prediction of displacements.

Areas where occlusion and disocclusion are taking place

are also predicted by the model (see figure 19).

This system is extended by Roach and Aggarwal (Roach

1979) to three-dimensional polyhedral bodies with

arbitrary motion. In this work, internal edges of

polyhedra are also tracked as part of an object.

These systems require "clean" edge features (the

binary input images), which are not directly available

from real outdoor images. The possibility of applying

the predictive modeling approach to real image analysis

should not be discounted however. In a system that deals

with real images, the primary obstacle to using tiis

system is in its reliance on edge features for

description and matching. The use of a model that

predicts image dynamics is essential to the system

presented in this thesis (see chapter III).

II.4.4 Relaxation techniques. Rosenfeld outlined a

relaxation technique that would form a cubic lattice of

pixels, where x, y, and t are the orthogonal dimensions

(Rosenfeld 1979). An update rule would then collect

volumes (rather than regions) of similarity,

!
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simultaneously segmenting the dynamic image both

spatially and temporally. This approach would still

involve search for the appropriate correspondence between

temporally disparate pixels.

Prager effectively solves the correspondence problem

for synthetic images where arbitrary motion of a solid

object and the observer occur (Prager 1979). The process

first produces edges using inter-pixel differencing, and

codes these edges according to the direction of the local

intensity gradient.

Displacement vectors are associated with each point

in the first image, and a relaxation process is defined

where each vector is iteratively updated. The update is

based on the match between the feature at the base of the

vector in the first image and the features near the tip

of the vector in the second image. Also, the similarity

of vectors in the neighborhood of each vector influences

the update. The process is iteratively applied until all

vectors have suitable matches between their base and tip.

The resulting vector field can then be segmented to

determine the rigid bodies of the scene.

I"
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Among the advantages of this approach are a high

degree of local parallelism, and the ability to deal with

motions in the third dimension. Also, the system could

handle multiple objects. Although this system was tested

on a real image sequence (the same sequence on which the

system presented in this thesis is tested), the results

were not as convincing as those for synthetic data.

Anomalies in the data, and the restriction of edge

placement to integer pixel positions are likely to have

caused most of the problems with the use of real data.

II.4.5 Moving image analysis summary. The utility of

edge features in motion analysis should be examined.

Indeed, the internal visual structure of an object should

exhibit properties that permit computation of accurate

and meaningful displacement vectors. However, this is

not necessarily the case for edges that are found on the

outer boundary of an object.

Edge and texture features are cften employed in

motion analysis systems because they supposedly indicate

areas of the image that can be tracked with less

ambiguity than point intensities. Edges are found

between areas of different intensity, and these

differences arise from a variety of phenomena. Because
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jdifferent surfaces often have different image

intensities, edges often will be found between the imaged

points from occluding surfaces.

It should be obvious that the edge of an occluding

region is an entity that belongs to and moves with the

occluding region. Unfortunately, the response of an edge

operator is dependent on the intensity difference across

a boundary, between both the occluding and occluded

regions. Thus, for a system to search for an edge in a

new frame that corresponds to one in the present frame,

it cannot rely on the discovery of an edge that has the

same magnitude and form as the edge in the present frame

(see figure 20). Rather, one must consider a scheme that

would predict the response, i.e., it would have to either

predict the intensity context around the position of the

occluded edge in the new frame, or assume that the edge

value would not change.

Prediction cannot be done unless the system has a

model of either the surfaces, or at least the distances

to points on either side of the edge feature. The same

problem exists with the use of correlation techniques,

but even more so because correlation measures are maximum

when the pictoral structure is identical in both frames.
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jSince these systems are aimed at detecting image

dynamics, they do not have a model until the motion is

detected. Therefore, edge features (or correlation)

should only be used if there is some way of determining

whether an edge indicates a discontinuity in intensity on

a surface, or between surfaces, or else a way of ensuring

that problems due to occluding surfaces has not

interfered with the matching process.

Higher-order edge features, such as line segments

and their points of intersections, called vertices, can

also show variability during motion. This is due to the

facts that such aggregates are collections of edge

features with their own variabilities, and occlusion

effects can cause motion of a vertex that is not related

in a simple way to the motions of the regions that it

results from.

To understand the motion of an image vertex consider

the effect obtained by imaging a pair of nearly vertical

objects by a camera moving in a straight line (see figure

21). The slight tilt of the edge of a tree, and its

intersection with the edge of a telephone pole will

result in the imaging of a vertex that moves vertically,

while the motion of the two regions and edges relative to

"1
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each other is purely horizontal.

Motion understanding systems that make use of

vertices (Martin 1977b) must identify each vertex as

belonging to either one surface or to the junction

between two or more surfaces. We feel that this approach

would be very difficult in our scene, since a large

number of surfaces exhibit many occlusions.

Vector field analyses are an obvious mechanism for

motion detection. They must be coupled with

three-dimensional models, rather than simple clustering

techniques, to obtain object descriptions where the

camera is in motion.

Tracking techniques are useful where a stationary

background is available, and simple image differencing is

effective. We have chosen to adopt image-differencing as

a method for resegmenting the image where an initial

model is incorrect.

The use of a scene model is attractive for several

reasons. Such a model could begin with little or no

information, and through a refinement process, produce an

improved model of the scene. Additionally, the use of a

predictive model eliminates the problems of occlusion as

1i
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demonstrated by (Martin 1977 ). We classify' such a

refinement technique as an hypothesize-test system. The

system presented in this thesis comprises image

differencing, predictive modeling, and vector fields to

produce a surface interpretation.
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C H A P T ER I I

THE SURFACE INTERPRETATION

If a person is shown a movie taken from the

passenger seat of a moving automobile, he can report a

perception of depth. The observer can predict when he

will pass by objects, and can easily judge which is the

closer of two objects. He can also judge the approximate

orientation of a large planar object that exhibits a

large distance gradient across its surface, such as the

road. It is 'tnis perception of depth - distance to

surface points - that we call the surface interpretation

of the moving image.

An observer can bring several sources of knowledge

to bear upon the sensory data in determining depth.

Because the moving image is monocular, the viewer cannot

make use of stereoscopic depth information. However,

experience with the size of familiar objects can help

with distance judgements. Additionally, cues available

in static images can be ed, such as texture gradients,

shadow, and occlusion. The system presented in this

thesis uses dynamic aspects of the image to judge depth,

an analysis based entirely on input data.

79
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The first section of this chapter introduces the

coordinate system and camera model. Then, real world

motion and depth are related to changes that occur over a

succession of images taken from a moving camera. The

representation used for the surface model is examined

next. The first section ends with a discussion of the

features selected, and the process for initialization of

the surface model.

In the second section of this chapter a system is

described which produces a surface interpretation. The

surface interpretation process is a sequence of

sub-processes that utilize a hypothesis-test strategy

(see figure 22). The first sub-process is responsible

for generating an initial model using static analysis.

The second refines the model, obtaining distances to

hypothesized surfaces. The final sub-process corrects

the model by discovering portions of hypothesized

surfaces that move in a manner suggesting that they are

distinct (separate) surfaces.

The algorithms presented in this chapter are

described pictorially as data-flow graphs. The

convention adopted here uses arcs to represent data flow,

circles to represent data, and boxes to represent
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processes. From these descriptions it is easy to

determine the amount of computation and memory that are

required to realize the system.

III.1 Representation and Issues

Before discussing the mechanisms for deriving a

surface interpretation, we examine several issues of

representation. We must specify the coordinate sys em

and projection relations. From these we define the

concept of "focus of expansion", a point which relates

the direction of travel to the image coordinate system.

Then, the representation of the surface model is

described. As mentioned in chapter II, the selection of

features for motion analysis is quite important. The

features chosen are presented next, and finally, the

technique for initialization of the surface model

concludes this section.

III.1.1 The problems of "start-up" and "continuation."

The discussions that follow describe the problems and

techniques for deriving a surface interpretation from a

pair of images. The term "motion stereo" is commonly

used to describe such analyses. We partition the set of

successive movie frames into a sequence of image pairs

(see figure 23). The earlier and later image of each
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18 27 36 45 54 frame
% ,number

1 2 3 4 image pair

number

start-up - - - continuation - - - problem

Figure 23. The sequenco of selected frames is formed
into a sequence of image pairs for analysis.

1
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pair are referred to as the t image and the t
01

image, respectively.

Derivation of the surface model from the first pair

of the sequence is called the "start-up" problem, because

the system has no internal representation of the scene

when it begins analysis. After a model is derived (and

refined) the next image pair can be used to (further)

refine the existing model. Model refinement continues

for all image pairs except for the first, and is called

the "continuation" problem. This chapter is focused at

solving the start-up problem because the solution of the

continuation problem is believed to incorporate a subset

of the analyses needed for start-up. This thesis does

not provide a solution to the continuation problem. That

is left for future work.

111.1.2 Moving image projection. In order for us to

derive the positions of scene points from the positions

and motions of the corresponding image points, we must

understand the camera model and the process of dynamic

projection. The three-dimensional coordinate system is

fixed to the camera, with the origin at the focal point

of the lens (see figure 24). Thus, the coordinate system

is moving with respect to the scene, and is stationary
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with respect to the camera. The X and Y axes of space

are set parallel to the x and y axes of the film plane,

and the Z axis points in the direction of travel. We use

the capital letters X, Y, and Z to denote position in the

environment, and small letters x and y for position in

the image ( Z = -f) plane.

The X and Y axes represent perpendicular axes

parallel to the x and y axes of the image plane. If the

image is perpendicular to the direction of travel, all

three axes are at right angles (as viewed from an 14

ortho-normal three-space coordinate system). Otherwise,

the X axis is rotated according to the pan angle, and the

Y axis is rotated according to the tilt angle of the

camera (see figure 25 and 26). For clarity, we will

initially show an image plane perpendicular to the Z

axis. Then, it will become obvious that the same

relations that are derived for the case where the image

plane is perpendicular to the Z axis will hold for the

case where the X and Y axes are skewed relative to the Z

axis.

The motion of the camera is defined as piecewise and

rectilinear, i.e., between each frame the camera is

assumed to be travelling in a straight line. Except for
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tilt angle

normal
y axis

imaewpe axincpa

y axis p i camera ray Z axis

e lskewed
x axis

image plane axis o s

a)

principal camera ray

~Z axis

plnskewed each line indicates a set of

x axis points of equal Z value

b)

Figure 26. The pan and tile angles define the skew of the
x and y axes (a), and (b) a simplification by viewing along
the y axis demonstrates the effect of a skewed x axis.
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jblur that occurs during exposure, there is no reason to

assume that the motion is other than piecewise and

rectilinear. The Z axis is defined by the line drawn

between a pair of successive camera focal points. For

clarity figure 24 is drawn with the coordinate system

stationary, so all scene points are moving relative to

the camera.

The only non-zero components of motion of scene

points in the coordinate system are their Z components.

We identify this motion component as AZ. The term

A Z is obtained from measurements of the position of

each movie frame exposure. The results of the entire

surface interpretation process are scaled by this term,

(as shown below) but the process itself is not affected

by the accuracy of A Z.

We use the letters P for scene points and Q for

corresponding image points. P is a vector of dimension

three (i.e., the coordinates in the scene are X, Y, and

Z) while Q is a vector of dimension two (i.e.,

coordinates in the image are x and y) in the image plane

(Z = -f). Of course, it is also necessary to specify the

time that scene and image points appear at particular

locations.

MAP
-6W
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t
Thus, P 0 represents the position of scene point P at time

ti
t , while P represents the position of scene point0

P at t 1

There are several other points that must be

specified for the derivation of the relationship between

image dynamics, positions of scene points, and camera

motion.

In particular the position of the point B, the points C

t
and E which are projections of P and P onto the Z

axis, the origir, 0 = (0, 0, 0) at the camera focal

point, and the image origin G = (0,0) in the film plane

are sufficient (see figure 24).

ti
We are now ready to derive the new position Q of

to

Fn image point given its old position Q and knowledge

of the distance Z to the scene point.

By observation of similar triangles on the image

plane we get:
Ad Ax A y

--... .-- . (1)
d x y

t 1  ti to
Using similar triangles 0 E P and P P B, we
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observe that:

AD AZ
- -(2)

D Z
t to ti

Since triangle 0 P B is similar to 0 Q Q and

triangle 0 C P is similar to 0 G Q we

observe that:

Ad AD

(3)
d D

Therefore by (1), (2), and (3),

A X AY Ad AD A Z

x y d D Z

AZ x AZ y
or A x ---- A-y -- , (4)

Z Z

and in vector notation the relationship can be expressed

t i to A Z t 0a s Q : Q + (--- Q )(5)

z

Thus, for the ideal camera model, the imaged displacement

A x , AY) for a point is easy to compute given some

change in distance AZ and a final distance Z.
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Now, if we allow the camera to have a constant pa

and tilt angle, and skew the coordinate system by these

angles, the same relations hold. in figure 27 a

simplified drawing shows the effect of one skewed axis.

Similar triangles from figure 2 4 are still similar in

figure 27. The major difference is that the Z axis

intersects the image at a different point than the

principal camera ray.

The use of a skewed coordinate system results in an

interpretation that is derived under the assumption that

surfaces of constant Z value are parallel to the image

plane. In the case of the data employed in the

experiments, the tilt and pan angles were very small and

had very little effect on the system.

111.1.3 Focus of expansion.

By observing any set of scene points over a time

t
interval we will notice that all the image points Q that

i
t

are projections of P move in straight lines outward from
i

the image point 0. r

Now"
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We define the central image point 0 as follows:

Definition: The Focus of Expansion is the point on

the image plane intersected by the Z axis. The Focus of

Expansion is abbreviated "FOE".

The FOE, defined by the scene's motion relative to

the image plane, is the point at which the axis of travel

intersects the image. This allows the direction of

travel to be determined from the image dynamics. The

values for x and y (the position of a point on the image)

are measured with respect to the FOE. Since the entire

surface interpretation process is based on relation (5).

the accuracy of the FOE is quite important.

In images from a real camera the FOE may not lie at

the center of the image or the principle camera ray

projection point. Small changes in the image orientation

can cause large changes in the placement of the FOE with

respect to the image center. For these reasons, the FOE

is not assumed to be at the center of the image. Rather,

a process that is described in section twc of this

chapter searches for the FOE.
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III.1.4 Assumption of non-rotating camera. One central

assumption made for the camera model is that the film

plane, and therefore the coordinate system, moves only in

the direction of the Z axis. Put another way, the camera

moves through the scene with a fixed orientation. It is

nearly impossible to maintain the assumption in practice.

Therefore, the images were registered to account for the

major portion of the effect of small interframe changes

in the camera orientation. Although this registration

was done interactively, it could be accomplished

automatically if the intertial frame of the camera were

recorded along with the images.

First we will examine the effect produced by change

in camera orientation, and then show the method of

registration which accounts for most of the effect.

Finally, we compute the resulting residual error.

The real camera has three orientation angles and a

translational component that will fully describe its

position and orientation. The three orientation angles

are called "tilt", for the rotation about the X axis,

"pan", for rotation about the Y axis, and "rotation", fcr

rotation about the Z axis. The translational component

is the spatial displacement of the focal point. The

1
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translation of the focal point determines the Z axis,

i.e. the axis of travel. Therefore, the ideal (model)

and real translations are identical. The pan, tilt and

rotation angles, however, are not accounted for in the

model as described so far.

As shown in figure 28 the position of an image point

on an actual (real) image can be related to the position

that the point would have if the image plane were at some

other (ideal) orientation. In order to compensate for

the placement error that results from inter-image camera

rotation we will formulate the difference between the

actual and ideal positions to which a scene point would

project. To simplify, we select the orientation of the

ideal image plane to be perpendicular to the Z axis.

Additionally, we simplify by showing a projection onto

the xz plane, reducing the image plane to a line.

One needs only to compute the new intersection of

the camera ray with the ideal image plane to determine

the location that the scene point would project to on the

ideal image. This can be done with the following

information regarding the real image point: 1) its

position on the real image, 2) the center of the real

image, and 3) the position of the FOE on the real image.
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ideal image plane

dd 93 Z axis
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point

" ' real .image plane

Figure 28. The relation between the intersection of

ai ray from a scene point falling on a real image pL nv
and an ideal image p lane
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The center of the real image and the position of the

FOE relate the principal camera ray to the Z axis,

effectively defining the pan and tilt angles. To

simplify, in our diagram only one angle is considered as

shown in figure 28. It is obvious that e 3 is the

difference between angles 0 2 and 0 1, and the focal

length times the tangent of 0 3 gives the position on

the ideal image plane. Angles 0 2 and 03 are easily

computed using inverse tangents functions. The resulting

ideal position of a real camera point, relative to the

FOE is given by the expression:

-1 x -1 x

x f tan ( tan r - tan c

f f

(6)

where i is used as a subscript for the ideal image point,

r is used as a subscript for the real image point, c is

used as the subscript for the principal camera ray or

optical center of the real image, and f is the focal

length of the camera. All x values are relative to the

centers of the corresponding images. This difference

between the position of the image point in the ideal and

real images increases near the edges of the image, and

increases as a function of the difference between the

orientation of the real and ideal image planes. For long

iJ~
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focal lengths and small film planes this error function

is very similar to a hyperbolic, as discussed in (Prager

1979).

This difference can be plotted as the change in

position (difference in number of pixels) arising from a

given change in FOE position (again in pixels), and the

position of given image points. Actual error functions

were derived for the camera and experimental data that

were used, and are presented in chapter IV.

The t 0 and t I images are registered so that

points far away, especially those near the FOE, line up

when one image is laid upon the other. This registration

was done interactively. It is accomplished by a

translation and a rotation in the xy p>-:,e.

The registration values (x and y translation and

rotation) could be used via relation (6) to then warp one

image so that it would appear exactly as if the camera

had not rotated, panned or tilted between frames. This

was not done however, since registration compensated for

the majority of the effect (about 98% of it in the worst

case), with a residual error of less than one tenth of a

pixel (see chapter IV) in the worst case. Also,

jcompensation of the residual error would be require

I
I
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computation of tangent terms for every image point would

produce a very heavy computational burden.

111.1.5 Surface orientation. Surfaces are the outer

faces of objects, and delineate each object from its

environment. The surface interpretation process deals

with visible outer surfaces as its basic entity. A set

of contiguous pixels of an image is called a region of

the image, and contiguous visible portions of surfaces

that are homogeneous can be segmented in the image as

regions. Unfortunately, there does not exist a

one-to-one correspondence between segmentable regions and

surfaces because of factors that have been discussed (see

chapter II). The use of resegmentation (as discussed in

section 111.2.6) is an attempt to correct for this

non-corespondence.

The relation between the motion of image points and

distance to the corresponding scene points has been

specified (5). The motion of image points hypothesized

to be on scene surfaces can now be examined. For

instance, a surface parallel to the image plane will have

the same value of Z for all points on that surface.
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The surface interpretation is based on an assumption

that all scene surfaces are planar and are in one of two

orientations: 1) a constant Z plane, i.e., parallel to

the image plane, or 2) a constant Y plane, e.g., the road

surface (see figure 29). We will not consider here the

planar surface of constant X, which is perpendicular to

the road surface, although the relations are very similar

to case 2 above.

Surfaces in the real world might not satisfy these

assumptions of planarity and orientation. Real surfaces

are curved, and found in an infinite variety of

orientations. Although planar surfaces do not accurately

reflect the nature of real surfaces, they are sufficient

for recognizing objects at a distance. Consider a

telephone pole, or a tree represented as rectangular

solids. The dimensions of height, width, and depth of

the real curved object are preserved reasonably well.

More detailed descriptions of surface orientation would

be needed if it were necessary to distinguish between

objects of the same size but different shape, or if it

were necessary to determine details of their

three-dimensional shape.

1
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Adding the third orthogonal planar orientation of

YZ, i.e., constant X, is certainly possible, and would

complete the trihedron cf planes. The inclusion of this

third orientation is left for further work, in

applications where its specification is needed. No

surfaces appear in our example scene that would require

its use. It is a rather straight-forward extension of

the techniques presented here with the major problem

being the selection of the three orientations as a best

choice for the surface of unknown orientation. Use of

orientation other than a small set of fixed ones would be

an extension of this work, increasing the search problem.

We call a surface of constant Z a vertical surface

since such a surface is parallel to the image plane.

Thus, the Z value in equation (5) is the same for each

point P believed to lie on any given vertical surface.

We refer to a surface of constant Y as a horizontal

surface because, for our images, such surfaces correspond

to the horizontal surfaces in the scene (in general, they

will be parallel to the ground). Let us examine this

case in a bit more detail.

I
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For a particular image point representing the

projection of a scene point lying in a horizontal planar

surface, the value of Z depends on the value of Y (the

height of the surface relative to the Z axis), on y (its

height in the image), and on f (the focal length of the

camera). Consider the simplified drawing of figure 30.

Because our formulation of image dynamics is cast in

terms of Z (the distance to a scene point), first we

determine the distance to a scene point on a horizontal

surface in terms of its height, and then substitute in

equation (4).

By similar triangles (in the simplified drawing

figure 30) we observe that:

f Z fY
- : - or, Z (7).

y Y y

Substituting this value for Z in equation (4):

2
AZ y AZ x y

Ay -- Ax = (8)
f Y f Y

111.1.6 Features chosen. The motion projection relations

(4 and 7) will be used to produce hypothesized

displacements for inter-image comparisons. These

comparisons are carried out by differencing point feature

values from the two images (according to predicted



IC



106

displacments). Differences are used as an error measure

to refine the model from which the displacements were

derived. Additionally, the initial model is derived from

point feature aggregations. We choose one point feature

to accomplish both inter-image comparisons and region

segmentation for the initial model. The algorithm

explained below generates a feature that is sensitive to

the distributions of data within the images. It was

developed by (Nagin 1979) for use on static scenes. This

feature is constructed from one or more initial features.

First, an initial feature, such as color or

intensity is selected by hand. The feature value for

each image point is calculated, and a histogram of all

the point values is generated. Image data often form

clusters in the histogram that correspond to populations

from visually distinct areas. Each cluster i is given a

unique label, Xi (see figure 31), and a vector of

distances in feature space from each point to all cluster

centers is computed. We make the assumption that the

likelihood that a pixel value is a member of a cluster is

inversely proportional to the distance between the

point's position and the cluster's center in feature

space. The inverse of each distance element is computed

and the vector is normalized so that its elements sum to
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one. These vectors (one for each image point) are the

features that we use in our feature image both for

initial segmentation, and for inter-image comparison.

Clearly, this general process is extendable to any

number of features, using a multi-dimensional histogram

that could combine color and intensity features. The

single feature example was chosen for clarity. Refer to

(Nagin 1979) for more details on this algorithm and for

improvements in its performance which can be obtained by

localization of the area over which histograms are

computed. Automatic selection of good features for this

system is being investigated by Kohler (Kohler 1980).

The point feature values (vectors) are used for

interframe matching in the refinement process of our

surface interpretation. Point features are not the

result of interpixel differencing, and therefore do not

fall prey to the problems associated with edge or vertex

features (see chapter II). Point features can be

aggregated in a variety of ways to produce segmentations

depicting regions of similarity in color or intensity.

These regions are used to delineate the hypothesized

surfaces in the initial surface model.
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I1. 1.7 The initial mode Before model refinement can

take place, an initial model must be supplied. We supply

our system with an initial model that contains as little

human-supplied information as possible. When the system

has no model of the visible environment, an initial

segmentation is derived using the technique descriped in

the previous section. This region analysis is performed

by aggregating the point features (section 111.1.6) into

regions. Each resulting region is initially assumed to

be a single distinct surface. In order to clearly test

the robustness of the refinement process, a number of

initial Y and Z assignments are made.

Note that any reference to a surface in the surface

interpretation model is a reference to a hypothesized

surface. Each hypothesized surface has a corresponding

region in the image. The regions are either derived from

the initial segmentation process (if the system were

starting anew), or could be composed of regions resulting

from the resegmentation and/or remerging process

described in the next section of this chapter. Thus, the

term "region" refers in general to an aggregate of pixels

based upon an analysis of features from a number of

sources, although a region is constructed from the image

data alone when constructing a new model.

*1
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The initial segmentation is automatically derived by

aggregating the feature image at time t . This0

aggregation is performed in four steps (see figure 32).

The first step is simply the generation of the feature

image, where the value of each pixel is a vector of

normalized inverses of distnaces to cluster centers in

the original feature space.

In the second step the vector for each point feature

is examined to find the label with the maximum likelihood

value. A new image is created with label numbers for

each pixel. These labels correspond to the nearest

cluster center for each point. The maximum label image

is effectively a segmentation based on a minimum distance

classifier, where the target set consists of cluster

centers.

In the third step, a plurality update rule is

applied to 3 x 3 windows of the label image. This rule

is an update function for the label of the central point

(Nagin 1979). This label is replaced by the label

associated with the mode of the labels in the window

surrounding the point (see qppendix). The plurality

update rule allows efficient computation at the expense

of yielding a cruder segmentation than that available
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from other update rules. In the experiments of chapter

IV we use two iterations of this update rule. This rough

segmentation is used as an initial plan for further

processing and refinement.

The fourth step assigns a unique region number to

each contiguous set of pixels with identical labels.

Thus, an initial segmentation is obtained.

The initial model consists of an image segmentation

where each region is assumed to be a separate surface.

Each region is given a label j, and initial values Z and
j

Y . The initial Z and Y values for all regions are set to
J

the same value by the user of the system. The effect of

choosing different initial uniform values is described in

the experiments in chapter IV.

111.2 The Surface Interpretation Process

The primary functions of the surface interpretation

process are the discovery and/or refinement of diances

_ vertical surfaces and heights of h o surfaces

in the scene. A secondary, but necessary function is the

discovery and refinement of the Focus Of Expansion.

These functions are carried out by a search process that

synthesizes images according to predictions of the

:*
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I motions of image points.

Figure 33 shows an example of correctly predicted

displacements for two hypothetical regions and several

points. Figure 34 shows the effect of changing the FOE,

while figure 35 shows the effect of changing the Z values

for each surface.

Predicted image motion is based upon the currently

hypothesized surface interpretation. Thus, an

hypothesized model nr FOE value is tested on the basis of

detected differences between it and displacements in the

image pair. The surface model is accurate if it accounts

for the displacement of image points between movie

frames. Refinement refers to a search process which

utilizes successive hypothesis-test steps.

Recall that the surface interpretation process

consists of three major phases (see figure 36 which is

similar to figure 22 from the first part of this

chapter). The first is model initialization. For this,

an initial segmentation is derived as described above in

section 11 .1.7, and each region is considered as a

distinct surface. Then, this set of surfaces is assigned

initial surface distance and height values (as described

in chapter IV). This completes the model initialization
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32 Meters

- 64 Meters

128 Meters 6 32

FOE

64 32

Figure 35. Effect of chwaging the Z values
for the surfaces is to shorten or lengthen
the displacement vectors. In this figure the
correct distance values are 64 meters.
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phase. The second phase is FOE, distance, and height

refinement. This phase is central to the entire process

and will receive the most detailed description in this

and subsequent chapters. The final phase is a surface

re-segmentation that both divides and joins hypothesized

surfaces based on their behavior with respect to the best

(refined) model. The resegmentation process is described

at the end of this chapter, in section 111.2.7.

The following discussions will contain descriptions

of algorithms, the majority of which are assumed to be

parallel in nature. The parallelism exists at the point

level, that is, the algorithms are to be applied at each

point of the t image or model.
0

111.2.1 Image synthesis. To accomplish model and FOE

refinements, the system compares two feature images. One

is the actual feature image taken at time t 0 and the

other is a synthetic time t 0 image. This synthetic

image is produced by warping the real t 1 feature image,

according to the surface model, so that it will look like

the real t 0 feature image if the surface model is

correct.
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Notice that this synthesis can be viewed as

"projecting backwards" in time (from the future to the

present). The choice of pr'jecting backwards - rather

than forward - is the result of choosing the t image

as the one from which the initial model is generated.

However, the computational mechanism is basically the

same in either case.

Image synthesis is accomplished through a process

which checks for occlusion, computes the displacement for

each point, and interpolates the t feature image for

sub-pixel resolution. We wish to compare a discrete

pixel value in one image to a corresponding pixel value

in the second image. The pixel value in the second image

is obtained by interpolating a synthetic value from a

window of feature values around the tip of the

displacement vector. The synthesis system is diagrammed

in figure 37. The occlusion and interpolation subsystems

are described below.

111.2.1.1 Occlusion. In our images, changes in

occlusion are the result of camera motion. The nearer of

two objects has a smaller value of Z than the farther

object. Equation (4) implies that smaller Z yields

larger image displacements ( Ax, AY), and therefore

A

I2
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imaged points from an occluding object must be moving

faster in the image than those from an occluded object.

Figures 38 and 39 show this effect and identify the areas

that are about to be occluded and "disoccluded" in the

successive frames. If the system does not take into

account the areas of occlusion, significant errors in the

comparison process would result. Therefore, the system

uses the hypothesized surface model to ignore, in the

matching process, those areas that are occluded and

disoccluded between two frames.

Unfortunately, it is not feasible (in general) to

determine occlusion at the same time as the inter-image

comparison; instead a temporary t surface model is

generated. Consider the problem of determining if a

point in the t ( image is going to be occluded in the

t I image. To predict this one has to know if any

closer surface will move to the predicted location of

that point in the t image. This cannot be known

unless it can be determined that every point of every

surface (between the predicted location and the FOE) will

or will not occupy that predicted location. Thus,

prediction of occlusion is a fairly global problem, and

the locality can only be constrained further by

restricting the velocity of image points. Furthermore,
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image of occluding
oh ec t

image plane

occluded area

Figure 38. The projection geometry determins

the effect of occlusion.
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the amount of local computation required, if such a

scheme were employed, would be considerably greater than

the amount required by the single-pass algorithm

presented below.

The first step performed in the prediction of

occlusion is the formation of a temporary t surface1

model (see figure 40). prior to inter-image comparison.

Each surface of the t o model has an associated value

for Z and Y that (through equations 4 and 8) yields a

predicted displacement (in the image) for each point of

that surface. These displacements are used to direct the

generation of a t surface model.
1

Many different visible points in the t model0

which are at different distances could be predicted to

appear in the same location in the t I model. The

algorithm employed predicts the displacement of each

pixel based upon Z and Y values, and then selects the

minimum at each location. Since the algorithm is

implemented as a sequential process, that is, each point

is visited only once in the t model, then the0

alogrithm will start with a t model which isI

initialized with 1000 meters. Then the process checks

the value at the predicted location in the t model,
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The more distant surface
is predicted to occupy this
pixel in the t surface

-model as well as the nearer
surface. Tho nearer surface
value (10) is chosen.

10 t o  20 20

10 20

zt0 = 10

Figure 40. An example of a surface at 10 meters
and another at 20 meters competing to assign a
value to the t surface model
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compares it with the t value and deposits the lower of0

the two.

Two methods are used for generating the temporary

t I surface model, but can both be expressed as one

algorithm (see figure 41). One method is used in

preparation for Z and Y refinement and the other is used

in preparation for FOE refinement. Recall that the model

consists of a Z value and a Y value for each surface.

In the case of Z and Y search the Z and Y values are

separately projected to the t model. Thus, the Z1

value for each surface in the t model is computed by1

projection of the Z values of the surfaces in the t
0

model, and the Y values for the t I model are computed

by projection of the Y values of the surfaces in the t
0

model.

In the case of the FOE refinement, another method is

employed for generating the temporary t surface model.

A choice is made whether each surface is to be vertically

or horizontally oriented. In this case the t model is
1

a special type of surface model. It is one with either a

separate Z or Y value for each surface, but not both.

The choice is based on the error measure which is

produced during the last (previous) search step of the
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refinement process. The error measure is explained

below, in section 111.2.2. Notice that the t surface
I

model is only used to predict occlusion. By making the Z

vs. Y choice, the "best-guess" surface model is used to

predict occlusion during FOE refinement.

111.2.1.2 Interpolation. The synthetic t image
0

is generated from the t 1 image in basically three steps

(see figure 42). First, the displacement vector for each

t 0 point is computed from equations (4) and (8). The

base of each displacement vector rests at the center of a

pixel, and is represented by a pair of integers. The tip

of the vector however, is dependent on the projection

relations, and typically is not positioned at the center

of a pixel.

The second step consists * a test prior to

interpolation. Consider the activity relating to one

point in the t 0  image. The displacement vector is

derived from the equations (4) or (8). The choice of

which equation to use depends on whether the search is

for Z, Y or FOE.
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If the point at the tip of the displacement vector

in the t surface model contains a distance value1

different from the point at the base of the displacement

vector in the t model, occlusion is hypothesized for0

the point. This is equivalent to discovering that this

particular point is hypothesized to not be visible in the

next image. The point in the synthetic t image is
0

assigned an occlusion flag if occlusion is hypothesized.

This flag prevents the occluded points from being counted I
when the error values are averaged across the entire

surface.

In the third step, each t synthetic image point0

that is not going to be occluded is assigned a feature

value. A value is synthesized for each pixel by

examining the area around the tip of the displacement

vector in the t image. To achieve sub-pixel

displacement resolution, the t image is to be

interpolated using a bi-linear interpolation scheme. The

contribution of each pixel covered by a displaced

pixel-sized square is weighted according to its area

(figure 4 3 ). The weighted sum forms the interpolated

value for the point in the synthetic t 0 image.
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111.2.2 Search using error images. The system employs a

search technique to refine the distance and height values

for each surface in the model, as well as for the FOE for

the entire image. As with all search techniques, a

measure is needed which indicates which of the trials is

closer to the goal. The assumption made is that errors

in the model will produce incorrect displacement

predictions between images, and thus, would lead to large

differences between actual and synthetic images. The

image produced by the pointwise difference between the

synthetic and the real feature image at time t is0

called an error image.

The difference values in the error image are

averaged across each surface to produce an error value

for that surface, and are averaged across the entire

image to produce an erro- value for an hypothesized FOE.

It is these error values that the search process uses to

select among alternatives (as described below). While

averaging values, the system ignores points that contain

occlusion flag values, thereby ignoring areas that are

predicted to be occluded in the next image.

- --- ,
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The difference measured between corresponding points

of the two images is the Euclidean distance between the

two feature value vectors. We hava already specified

that these vectors are normalized (based on relative

distances to cluster centers in feature histograms) so

the sum of the elements of each vector is one.

Therefore, the maximum distance between any pair of

feature value vectors is the square root of L-1, where L

is the number of labels (length of the vector). In order

to scale all difference measures into the same range,

regardless of the number of cluster labels employed in

the initial segmentations, the Euclidean distance between

point feature values is divided by the square root of

L-1

Now let us consider how error images will be used in

a search process. We assume that incorrect FOE, Z or Y

values will lead to many incorrect predictions of point

displacements, which will thereby cause large values in

the resulting error images. Several error (difference)

images can be computed by differencing the real feature

image with several synthetic images, where each synthetic

image is the result of a systematic variation in the

location of the FOE, in the Z value for a surface, or in

the Y value for a surface (See figure 44). The image
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with the least error indicates the model which best

predicts pixel movement.

The systematic variation of FOE will simply involve

increments anl decrements of the x and y values for the

FOE. The systematic variation of 7 and Y will involve

increments and decrements of the values for Z and Y for

each surface. These variations are used to sample an

interval of the unknown error function for each value

being refined. The search pattern of samples includes

one central value (no change), one incremented value, and

one decremented value for each value being refined.

Thus, a simple "hill-climbing" technique minimizes

an error value (perhaps it should be called

"valley-descending"). In general, this technique is

vulnerable to getting stuck on a local minimum, although

in practice we have not experienced such events. Even in

such cases, since new data arrives frame by frame, one

would expect that the system would recover from local

minima fairly quickly.

Th search is iterated, each time using the last FOE

(Z or Y) value(s) that produced the lowest error measure.

The sizes of the increments and decrements are reduced

during the search process so that it may converge. Each



with the least error indicates the model which best

predicts pixel movement.

The systematic variation of FOE will simply involve

increments and decrements of the x and y values for the

")E. The systematic variation of Z and Y will involve

increments and decrements of the values for Z and Y for

each surface. These variations are used to sample an

interval of the unknown error function for each value

being refined. The search pattern of samples includes

one central value (no change), one incremented value, and

one decremented value for each value being refined.

Thus, a simple "hill-climbing" technique minimizes

an error value (perhaps it should be called

"valley-descending"). In general, this technique is

vulnerable to getting stuck on a local minimum, although

in practice we have not experienced such events. Even in

such cases, since new data arrives frame by frame, one

would expect that the system would recover from local

minima fairly quickly.

Th search is iterated, each time using the last FOE

(Z or Y) value(s) that produced the lowest error measure.

The sizes of the increments and decrements are reduced

during the search process so that it may converge. Each

ii
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value is refined under the assumption that the search

proceeds toward a global minimum error. Figure 45 shows

an error function and several successive samples. We use

the parameter "k" for the sampling increment as described

in each search process below.

111.2.3 Search for FOE. Two search systems for FOE are

discussed. During start-up an accurate surface model is

not available. Therefore, tc handle the start-up

problem, an enhanced search process is used; it is

presented below in section 111.2.5, after the basic FOE,

Z and Y searches are explained. First, however, we

examine the basic FOE search process, which is effective

when an accurate surface model is available.

The basic FOE search mechanism examines nine foci of

expansion (see figure 46) and for each FOE it produces a

synthetic feature image. These images are differenced

with the actual feature image at time t 0 , and the

difference is averaged across the entire image, thereby

producing one error value for each FOE. The FOE that

results in the lowest error is chosen as the next central

starting point.
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a restil t i ng
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Figure 46. Nine synthetic images and their
resulting error images are generated, each
with the assumption of a different FOE.
Here the displocements for one point nre
diagrammed.
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An incorrect placement of the FOE would predict

incorrect inter-image displacement of every point. Thus,

those FOE placements that are most incorrect should

produce errors of displacement resulting in large

inter-image differences, or a high average error measure.

Likewise, the FOE placement that is closest to correct

usually should produce the lowest error measure.

The search proceeds by first selecting an initial

FOE, and an initial value k for the distance increment in

the x and y directions for each focus. The default

starting value for the central FOE would be (256, 256) on

a 512 x 512 image, and the value of k would be 128.

Thus, the nine foci of expansion would equally cover the

entire image. On the next search step the value of k is

reduced so that the sample set is equal.y spread within

the area between the point position that produced the

minimum error value and the samples around it that did

not produce the minimum. In this case, k would be 64

(See figure 47). The value of k is reduced each

iteration by a constant multiplicative factor of 0.5

The FOE search selects FOE positions in discrete pixel

units. It stops when it chooses between nine ac(jacent

pixels.
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image size = 512 x 912

k=128

A A A

64

D [ *4e'

Figure 47. Successive FOE sample 1paitterns for
the first three iterations of a '12 x 512 image.
The parameter k is first set to 128, then to 64
and then to 32 pixels, as indicated hv triangle,
box and dot respectivlv.
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If the FOE is known to be on the image, it is

possible to reduce the parameter k on each iteration.

This is because the search is assumed to move toward the

correct solution on each interation and because the

search space is bounded. In circumstances where the FOE

is suspected to be off the image, or where assumptions of

correctness for each successive search step are not

valid, it would be necessary to use an appropriate

initial value of k, (perhaps larger) as well as a test

for reduction of k. This would allow the search to

proceed a considerable distance from the image to find an

FOE which, although on the image plane, is not within the

bounds of the image data.

We cannot guarantee that the global minimum error

will be found by only selecting nine sample foci and

searching. However, our experience to date has

demonstrated that this sample set and technique has been

adequate to locate the FOE in our image data. This

search takes 9 ((log N)-1) full image differences to
2

cover an image of N x N points. This value is 56 and 72

for N equal to 128 and 512, respectively. Expressed in

terms of search iterations, each consisting of the nine

foci to be tried, the numbers would be 6 and 8.
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III.2.4 Search for the Z and Y values for surfaces.

Recall that the search mechanism for distance and height

of surfaces uses a simplified model of the physical

environment where there are only two orientations of

surfaces. Each of these orientations is parallel to a

plane containing two of the axes in the coordinate

system. Therefore, we need only determine one value for

each assumed orientation, and choose the orientation that

best accounts for image dynamics. The determination of

each surface distance or surface height involves a search

among values that predict the actual image dynamics.

This search takes place separately for each surface.

The search for the Z and Y values begins with an

initial model of values for each surface. These initial

values can come from a previous surface interpretation,

but here we start the system by introducing values by

hand. Experiments in chapter IV examine the effect of

various starting values. The values we introduce are the

same for all surfaces, i.e., a uniform Z and Y for the

initial model. This represents the start-up case, where

there is no knowledge of the scene.
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The search strategy selects three values: Z - k Z
J i J

Z , and Z + k Z for each region J, and similarly for Y

J J i JJ

An initial value of k for each surface is given as 0.5

Thus, if the initial Z were 100 meters and the initial Y

were 1.0 meters, the three values for each Z and Y during

the first iteration of the process would be 150 meters,

100 meters, and 50 meters for Z, and 1.5 meters, 1.0

meters, and 0.5 meters for Y.

We reduce the parameter k for each region j when the

current (central) value for Z or Y produces less error

than either of the other two search values. When a

central value is chosen, we assume that the final value

will be between

Z + Z k and Z - Z k and therefore

J J i J J J

decrease the k for region J. We select a multiplicative

factor of 2 since this produces a relatively gentle

2

reduction of k by 0.5 for every two iterations, at least

in the case where the central value has the least error.
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The search mechanism is applied independently for

each surface and employs three stopping criteria for the

Z and Y search: a) the attainment of a Z greater than

1000 meters or less than 20 meters, b) the application of

20 iterations of the search process, or c) the attainment

of a k of .025.

The limits on absolute distance stop the refinement

if the surface is either too distant to register any

discernable image velocity, or too close to be visible in

both images. When either condition occurs there is no

reason to continue the search.

A "k" of .025 indicates an attempt to re-olve

distance to + 2.5 percent, a figure more precise than

actual scene distance measurements (see chapter IV).

Given our othonormal surface approximation, there is no

point in resolving model accuracy beyond that which can

be directly measured at the scene.

If a surface has not reached one of the other

criteria within 20 iterations, it typically is either

very close to doing so, or it is oscillating because of

an incorrect initial model. This latter case, and

recovery mechanisms, are discussed in section 111.2.6.
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The Y search is stopped if Y attains a value less

than -3.0 meters, if the search proceeds 20 iterations,

or if the value of .05 is attained for k. The 3.0 meter

criterion is used to "catch" any attempt to go beyond

actual scene surface heights (for those surfaces with

horizontal orientation). In the experiments presented in

the next chapter very few surfaces reached the 3.0 meter

criterion. The criterion for the parameter k is twice

the value as for the Z case, again reflecting our ability

to compare the results with actual scene measurements.

111.2.5 Decoupling the Z search from the FOE search.

Consider the application of Z value refinement with the

FOE grossly in error. Let us suppose that the FOE were

placed to the upper right of the sub-image, while the

correct position is off the sub-image to the lower left.

The Z refinement would be based cn displacements that are

grossly incorrect - wrong displacement amplitudes and

directions - everywhere in the sub-image! If the image

had reasonably discernible variations in the values of

spectral features, then false matches and large computed

error would occur regardless of the Z chosen. This would

always be true of areas of the image that are on the

"wrong side" of the incorrectly placed FOE because

predicted image displacements of those areas would be in
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a completely erroneous direction. This conclusion was

supported by an experiment (not reported upon here) that

showed areas on the wrong side of the FOE to be diverging

from the correct Z value. The conclusion is that the Z

refinement should not proceed when the FOE is grossly in

error.

Consider now the converse problem. If an initial

model is grossly incorrect ani we attempt to search for

the FOE, will we run into the same sort of difficulty?

Our conjecture was that the direction rather than the

amplitude of predicted displacements would have the

greater effect upon the computation of error. The

conclusion, if this conjecture is sound, is that FOE

search can proceed with minimum information ( a ballpark

figure of uniform Z across the image), while Z refinement

cannot proceed unless a reasonable FOE is used.

This conjecture has one failing. Consider an image

as shown in figure 48, where the numbers are meant to

represent the actual distances to the surfaces. Given an

initial uniform model, where each surface is hypothesized

at 64 meters, the FOE search will be driven toward point

"b" rather than the correct point "a" in figure 48. This

is because, at point "b" the predicted displacement

_ . ' A



IT

I 147

I

1000

b

+

F I re 48. Th, tocus of expansion can be

incorrec t 1V vChW,!',n if t , r(';i re surfaces on

either side ot the proposed foci which are

gri,;itrr ;ind Iese; than the hypot lies i zed Z values.

14



148

amplitudes for both surfaces are closer to the actual

displacement amplitudes.

The points on the surface which is actually 70

meters away will have average displacements of 2.0 pixels

amplitude in our example. With the hypothesized Z of 64

meters, the hypothesized displacements with the correct

FOE will be 2.2 pixels of amplitude. If the incorrect

FOE, point "b," is chosen, under the hypothesis that the

surface is 64 meters Z, the average displacement of 2.0

pixels amplitude will result. Because this amplitude is

correct (for the data) and the displacement direction is

nearly correct, the error will be minimized with the

selection of point "b" for the FOE. Similarly, the

surface with a Z of 50 meters, under the hypothesis of a

Z of 64 meters, will drive the FOE search to point "b".

Thus, asymmetries in the spatial distribution of

surface distances will have an effect on the FOE search

when the model is incorrect.). Furthermore, once the FOE

is placed at point "b", successive Z search steps will

continue to affirm 64 meters as a correct Z value for

both surfaces. Then, if more FOE search steps are

performed, the FOE will remain in the vicinity of point

"b". The error could be unrecoverable, and could cause
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similar errors in successive frames, until motion of the

camera sufficiently changes image composition and

dynamics.

The problem is solved by decoupling the FOE search

from the errors in Z values by an enhancement we call

"weighted-error". The contribution of each pixel's

inter-image difference value to the average error value

is weighted according to the pixel's position. This

scheme makes the search more sensitive to the direction

of displacement, and less sensitive to the amplitude of

displacement. The weighted-error enhancement is meant to

be used during the start-up phase, i.e., the first two

frames of a sequence. Once a good model is obtained, the

simple FOE search should be used because it is

computationally more efficient.

Now we will examine the directional weighting of

difference values. We will consider three foci along a

line during the FOE search process. For our example we

chose the lower left, central, and upper right foci (see

figure 49). Displacements of points lying near or on the

line that includes the three foci of our example will

show the greatest variation in terms of their amplitude

as a choice is made among these three foci. The
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displacement of points lying on or near a line

perpendicular to the line containing the three foci will

show the greatest variation in terms of their direction,

and therefore are more likely to disambiguate among

alternative foci by contributing strongly to some error

images when the direction of movement is incorrect.

Therefore, the error image produced for each of the

three foci will be weighted so that points near the

perpendicular line that passes through the central focus

have more influence, while points near the line

containing the three foci will have less influence. A

sine function serves to weight the error because it is

maximum at Pi/2 (and 3Pi/2) and minimum at 0 (and Pi)

radians. After experimentation, the function selected

was: E' = E . (sin'*2 Theta). The squared function is

chosen to narrow the search locus, so that (radially)

adjacent patterns would have minimum overlap. Theta is

the angle between a line containing the point (passing

through the central focus) and the line containing the

three foci (see figure 50.) E is the point error computed

by differencing the feature vector values, and E' is the

resulting weighted error value.

1!
b
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This approach breaks up the nine foci into four

groups of three each, where the central focus is in all

groups. The error values obtained for the three foci of

the different groups will be biased more strongly by

different portions of the image. Since the error

produced by each focus will be compared with all eight

others to choose a minimum, the error value for each

focus must be normalized.

To normalize the weighted error, the average error

values obtained by using each of the three foci along a

line are divided by the average error obtained for the

central focus. Thus, the central focus will always have

an error of 1.0, and the best choice during the

weighted-error search is the focus produc ng the lowest

normalized error. If the central focus is the best

choice, all other foci wil. produce a normalized error

greater than 1.0. Otherwise, the lowest will be less

than 1.0.

111.2.6 Resegmentation. Sometimes surface

discontinuities occur without giving rise to discernable

visual characteristics in the image, and often visual

discontinuities are imaged from sources other than those

that occur because of surface discontinuities (see

I
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chapter II, section 2). Static segmentations do,

however, reflect many of the surface discontinuities

which are discernable in images. But, it is impossible

to guarantee correct surface segmentations directly by

the analysis of a static image, i.e., there is not

usually a one-to-one relationship between regions and

actual surfaces.

When two or more surfaces at different distances are

combined by the original segmentation into one region,

they are incorrectly considered to be one surface. In

this circumstance it is impossible for the Z and Y

refinement process to determine a single correct value,

since the region is the image projection of more than one

surface. If a value of Z is correct for the nearer

surface, it will be incorrect for the farther one, and

vice versa.

When the assumed distance for a surface is

incorrect, there will be an incorrect set of hypothesized

displacement values. A comparison between points with

different feature values results in error measures (in

the error image) that are high. The size of a region of

large error values is dependent on both the magnitude of

the displacement error, and the size of the region. The
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amplitude of the error depends on the magnitude of

feature difference between the region and its surround

(see figure 51). Note that an error will not be obvious

if the two surfaces at different distances are visually

similar.

The Z and Y search can be affected in two ways by an

error in the initial segmentation. One is to converge to

a value between the actual Z and Y values of the surfaces

comprising the region. The other behavior is an

oscillation between two values within the interval

containing the minimum and maximum Z or Y value. Since

the search is always terminated, we end up with a result

that is somewhere near correct for at least one of the

surfaces in question, or between the correct values for

the surfaces.

The error image produced by the differencing of

image points between the real image and the synthetic

image based on the final Z and Y values, is used for

resegmentation. If there are visible feature differences

which indicate what areas are incorrect, then those areas

will produce patches of large error values.

i "
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An automatic threshold selection algorithm (Kohler

1980) is used to produce new regions from the error image

where the error values are above threshold. This

threshold is chosen by measuring the contrast produced

across all error value contour lines in the error image.

The choice of thresholding algorithm, however, is

probably not very important. Once the strongest error

patches are roughly segmented from the error image, a

plurality update rule (see appendix), similar to the one

used for initial segmentation, is applied for two

iterations to smooth the patches and remove those

composed of one or two points.

The original segmentation is modified by adding the

error regions in a replacement fashion. Wherever an

error region exists all points in the original

segmentation are replaced with a unique new label. All

regions in the new segmentation are assigned Z and Y

values equal to the average Z and Y of the model over

their area. Thus, old surfaces retain their refined

values, and the newly hypothesized surfaces begin with

the supposedly incorrect values that led to their

discovery. The search can now begin anew with the

ability to more accurately model the motion of points on

the newly hypothesized surfaces.
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111.2.7 Surface merging. After the scene model is

initiated and refined, the interpretation of the scene is

available as regions that correspond to surfaces of one

of two orientations. The values of Z or Y of each

surface is specified, and adjacent regions with similar Z

or Y values can be merged into one surface with the

average Z or Y attached to the collection. We call this

clean-up process a surface merge, for it merges

excessively segmented surfaces.

We might also consider merging non-adjacent surfaces

with the same distance. This, however, is not a good

practice unless other information indicates that the two

surfaces are indeed portions of the same surface.

Suggested possible sources of information could be

occlusion, spectral attribute similarity, and identical

object identification. No experiments were done with

non-adjacent merging.

111.2.8 Summary. Our system has been designed to

interpret images in terip a two-orientation surface

model. It uses an h. :.ht e test paradigm to refine a

model which is initialized from static pictorial cues.

The axis of travel is determined by an FOE search which

can operate in two modes. Weighted-error is used for the
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start-up problem, while a simpler search is suggested for

use in attacking the continuation problem. With the FOE

specified, image dynamics are used to refine the surface

interpretation.

An hypothesize-test technique is used where image

dynamics are predicted from a model of surface distance.

This technique uses regions as the locality to be

refined, and compares sets of pixel (point) features

rather than the more commonly used edge features. The

comparison between images uses interpolation to resolve

displacements to sub-pixel accuracy. Errors in the

segmentation used for the initial model are then

discovered and the new model is refined again.



CHAPTER IV

DATA AND RESULTS OF SURFACE INTERPRETATION

The surface interpretation system was developed

through experimentation performed on a real moving image.

These experiments demonstrate the effectiveness of some

of the mechanisms in building an internal representation

that depicts the physical environment. In each

experiment a separate search algorithm is examined

independently. Then the algorithms are joined together

to form an integrated system.

This chapter is divided into three sections. The

first section describes the data and the method of

recording them. In it there is also a discussion of

measurements taken at the scene and the deviation of the

real camera from an ideal one. The second section

presents the initial segmentations used for the

experiments. The third section reports on a set of

experiments that are designed to test the search and

resegmentation processes. Recall that the search

mechanisms derive the distances and heights of surfaces,

and the correct location of the FOE. The process which

resegments the image extracts surfaces that were

incorrect in the initial model. Finally, the entire

160I oi
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System Is tested. d emontratlng I ts oapabilltIt.I ton In

handling the start-up problem.

IV. 1 Data

Data were collected by taking movies from the

passenger seat of a moving automobile. Over thirty

minutes of movies were taken so that a short piece could

be selected during which the automobile was moving

through an interesting scene. The section selected was

only three seconds long. This selective process was

necessitated by the limitations of digitization, storage,

and computational resources then available in our

research laboratory.

IV.1.1 Collection and registration. Our scene was

recorded in color with a super-8 movie camera which was

mounted on a gyroscope and hand held by an automobile

passenger. The camera was being displaced in the Y

direction as the automobile traveled over bumps on the

road, ani in the X direction as the automobile was

steered. A non-zero average tilt, pan, and rotation are

present in the Images as shown in figures 52 and 53.
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The moving image was taken at the end of September

on a partly cloudy day at noon. Therefore, the trees are

dark (since Autumnal leaves did not appear until October)

and the scene is well lit. Because of the clouds, there

was considerable visual texture in the sky.

A sequence of 54 frames was selected for analysis

and digitized through red, green, and blue filters at 504

x 480 resolution with six bits of dynamic range per color

(Pilipchuck 1979). The three color data images for each

frame are in perfect registration. Only certain frames

were chosen for analysis. Some experimentation was

performed on every ninth frame; the experiments reported

on here used frame numbers 45, 51 and 54, where 45 and 54

were one pair and 51 and 54 were another. The camera was

operating at 18 fps, so two images that are nine frames

apart would represent a 1/2 second interval.

The chosen digitized frames were registered by hand

so that scene points far away from the camera would not

appear to move when any two frames were successively

displayed. The scene points used for registration were

in the clouds and a distant road sign over 300 meters

away and near the center of the image. The first part of

the registration process involves translation where one
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image is brought into register with another by simple

translatiion in the X and Y directions. The second part

of registration is rotation, where one image was rotated

(in the image plane) to register with the other. Only

one frame of those selected exhibited dppreciable

rotation, and therefore required rotational registration.

Correction for pan and tilt (beyond the act of

registering the images) was considered, but not

performed. Table 1 shows the registration required for

the frames. The corresponding worst case residual error

after registration (see chapter III, section 3.1.4) is

shown in figure 54 and 55. The error was typically less

than one tenth of a pixel in the worst case, and less in

most cases. This low residual error, plus the inherent

additional error that could be introduced by extra

interpolation steps, led to the decision not to correct

for pan- and tilt-induced projection distortion except

for correction by registration.

Since it ic desirable for the process to work not

only on the whole image but also on any portion of it,

two image sequences were prepared (see figure 56). The

first is a 128 x 128 portion of the original image

containing a road sign, a telephone pole, and a

background tree. This subimage was selected because it
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REGISTRATION REQUIRED IN PIXELS RELATIVE TO FRAME #54

FRAME # X Y

18 10 (2.5) 4 (1.0)

27 0 (0.0) 4 (1.0)

36 7 (1.7) -7 (-1.7)

45 -4 (-1.n) -14 (-3.5)

51 -5 (-1.25) 1 (.25)

54 0 (0.0) 0 (0.0)

Table 1. The registration required to
align all frames with frame #54 is given here in
pixels at 512 x 512 resolution, and at equivalent
128 x 128 resolution in parentheses. Registration
was performed in discrete pixel units at full
resolution.
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averaged images 12'6 x 120 suhimages 128 x 128 pixels

FIgure 56. The data for thc cxperiments were obtained by
averagi-4 the entire image, and by extracting a subimage.
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allowed easy examination of the interpretation process

where a small number of clear events are taking place.

The second sequence is the entire image averaged to

126 x 120 using non-overlapping 4 x 4 windows. The

entire image shows the sky, road, trees, the nearby sign,

a distant sign, telephone poles, and some guard rail

posts (see figure 57).

To develop and test the surface interpretation

process two pairs of frames were chosen from the end of

the 54 frame sequence. The first pair consists of frame

numbers 45 and 54. This pair was used for both the

entire image and the subimage. The second pair consists

of frame numbers 51 and 54 for the subimage. The choice

of 51 as the starting frame for the subimage was based on

the fact that frame 51 had a naturally occuring

segmentation "error" which posed some difficulty, and

could be used to test the resegmentation process. Thus,

frame 51 is actually a more difficult frame to deal with

(see section IV.2.1). Tests were run on images from the

last part of the 54 frame sequence because there were

some large objects with considerable image velocities.

In addition, the system was run on every ninth frame,

representing half-second intervals, from numbers 18 to

54. The results for the entire sequence were not
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Figure 57. The whole image frame 45
averaged
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analysed in detail, but rather presented to indicate that

the process delivers similar results on other portions of

the sequence.

IV.1.2 Scene measurements. To evaluate the

experimentally derived distances and heights, actual

scene measurements were obtained. The computation of the

distance to scene points (given the corresponding

displacement on the image) relies on the parameter A Z

to scale the results (equation 5 chapter III).

Therefore, we had to measure both the parameter A Z, and

the disposition of actual surfaces with respect to the

camera.

To accomplish this measurement, prints of the movie

frames and the camera used to take the movie were taken

to the scene. The photographic prints were visually

matched with the viewfinder image. Multiple instances of

occlusion of objects gave clear reference points that

could be used to place the camera. This resulted in a

placement of the camera to less than + 1.0 meter for any

individual frame.
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The centers of the possible locations for two of the

frames chosen for experimental analysis (numbers 45 ana

54) were eight meters apart. This yields a A Z of .88

meters per frame. This value was verified by

measurements of 0.86 to 0.90 meters per frame across

other sequences of the 54 frames using the same

technique. The average from frame one to 54 was also .88

meters per frame. Since the automobile velocity and

frame rate were very nearly constant, we assume that the

figure of .88 meters is correct to + five percent. This

figure is derived by assuming + 1.0 meters of uncertainty

at both the beginning and end of the 54 frame sequence.

The actual distances and heights of scene surfaces

could then be measured directly from the position that

the last frame was imaged. These measurements are

presented with the experiments (see section IV.3) where

the derived Z values can be evaluated. The derived Z

values must be judged within the context of the + 1.0

me'.- error in camera placement, and a possible error in

measuring the parameter A Z which is probably less than

+ five percent. These two uncertainties are manifest in

an absolute uncertainty of distance to + 1.0 meters plus

a multiplicative factor of + 0.05.
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The value for Y is measured from the Z axis. Under

jthe assumption that the axis is parallel to the road, the

Y value for the road is -1.1 meters; however the road is

slightly cambered, to about -1.2 meters at its edges.

Some ground plane is visible to the right of the road.

This grassy area is slightly lower than the road in the

foreground, about -1.5 to -2.0 meters of Y. In the

background it begins to rise again, but the exact amount

is hard to estimate.

IV.2 Segmentation

The first step in forming a surface model requires

the segmentation of the frame at time t 0 (for our first

analysis this will be frame 45). This segmentation is

used as the initial set of hypothesized surface

projections, and therefore defines the localities over

which comparisons between real and synthetic images are

made.

The initial features were selected (interactively)

to provide good separatiin of distinct visual properties

of the image. The V and W color features 'see appendix)

were found to serve this purpose. Either of these

features would be sufficient to define some histogram

clusters, and in turn, some interesting regions in the

I
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subimage. However, the complexity of the full image

demanded greater discrimination than a single feature

would allow. For consistency, rather than the use of one

feature on the sub-image and two features on the averaged

image, the two dimensional histogram V x W was chosen for

both the subimage and the entire averaged image.

The initial segmentations were formed in four steps,

as detailed in chapter III, section 3.1.6. In the first

step the point features, V and W, were computed and a

two-dimensional histogram was formed. Four clusters, as

described below, were found automatically in the

subimage, and five were found automatically in the

averaged full image. The feature image was then formed,

where each pixel is a vector of normalized cluster

distances. In the second step the maximum label from the

feature vector of each pixel was assigned to that pixel,

reducing the vectors of possible labels to a single label

at each pixel. This is effectively a minimum distance

classifier applied to the feature value of each pixel,

where the cluster centers in feature space are the target

classes. The third step was the application of two

iterations of the plurality update rule, where the

majority label in each pixel's neighborhood becomes the

new label at the central pixel (see appendix). The
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fourth step was region labelling, wherein a unique region

number is assigned to each region of contiguous labels.

One of the experiments presented below is based on

the segmentation derived automatically from these

features. However there are several interacting

problems, any one of which could cause system failure.

Since our approach is to test the subsystems in

isolation, some of the experiments should have an

accurate initial segmentation. Therefore, we have chosen

to provide an initial segmentation for the subimage which

was derived through two steps. First, a segmentation was

derived automatically, by use of a plurality update rule.

Then, the regions were combined manually so that the

final segmentation was a reasonably good approximation to

the scene surfaces. The experiment that was run on the

entire averaged image shows the performance on a

segmentation generated directly by the computer where

there was no further modification by hand.

IV.2.1 The subimage. The subimage was used as data in

the first four experiments. These experiments

demonstrate that the surface distance search subsystem

- the Z Search - could achieve the sub-goal for which it

was designed. The particular subimage was chosen because

4
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Figure 59. The four feature images which
comprise the four element feature vector
image used for segmentation and inter-image
comparisons. Frame number is 45.
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Figure 60. Subimage for framc- njumrro 45
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of the clarity of the events that occur in it.

Four clusters were found in the histogram of the

first subimage. (see figure 58). These correspond to 1)

the yellow portion of the sign, 2) the telephone pole and

some of the border around the sign, 3) the lighter

portions of the tree texture and some cf the border of

the sign, and the border between the arrow of the sign

and the yellow background, and 4) the darker portions of

the tree and the central part of the arrow of the sign.

(see figure 59).

The experiments which used the subimage required a

good initial surface segmentation so that experiments

could be conducted on subsystems without extra

complications. Thus, the 77 regions obtained by this

automatic process were coalesced interactively into three

regions. This resulted in a rough separation of the

sign, the telephone pole, and the background tree (see

figure 60), making this initial segmentation (figure 61)

close to correct. To test the resegmentation subsystem,

frame 51 was selected as the t image because it0

generated a segmentation which joined the sign with a

piece of a building which was visible through the

background tree. The segmentation for frame 51 was

I
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I 31

Figure 61. The segmentation used for
subimage number 45.
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manually modified, but the segmentation error was left

unchanged (see figures 62 and 63).

IV.2.2 The averaged image. Experiment #5, described

below, was designed to test the entire surface

interpretation system on the full image. For this

treatment the full image was averaged by non-overlapping

4 x 4 windows, resulting in a 126 x 120 image.

Considerable loss of resolution results from this

averaging, especially noticable around the edges of areas

with visual contrast, and in areas with strong texture.

In these areas, the transitions from dark to light have

been blurred. Images with reduced sharpness are very

difficult to handle with systems that rely on inter-pixel

differencing and discrete edge feature placement, and

therefore the averaged image offers a good test for this

system, where the use of motion information can provide

recovery from ambiguous or erroneous segmentation

decisions.

As w!th the subimage, the V x W histogram was used

to find clusters. Five cluster centers were

automatically selected, and the minimum distance

classifier found 232 regions. Two iterations of the

plurality update rule (see appendix) reduced this number
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Fiqure 62. Subimage for frame number 51



I
184

Figure 63. The segmentation used for subimage
frame number 51. Note the inclusion of background
bright spots which are not part of the sign.

doi~:
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to 152 regions. These regions were not modified further

(as were those in the previous experiments). Instead,

the segmentation produced by the computer was used

directly, without human intervention (see figure 64).

IV.3 ExReriments

Five experiments are presented that summarize the

performance of the various subsystems of the surface

interpretation system. The three mechanisms that were

examined are the Z and Y search, the FOE search, and the

resegmentation process. The first three experiments

examine each of these three subsystems under the

important assumption that proper data are provided by the

other subsystems. In particular, we consider Z search

with a correct FOE, FOE search with correct values of Z,

and resegmentation of a mostly correct segmentation and

surface model. This will permit fair evaluation of each

mechanism without requiring their coordination. The

fourth experiment was designed to explore the interaction

of the mechanisms for FOE and Z search. The fifth

experiment tests the functioning of the entire system

with minimum human intervention.
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Figure 64. Segmentation used for image pair #I 4
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IV.3.1 Experiment # 1, search for Z, given: correct FOE

and generally correct segmentation. The purpose of the

first experiment was to evaluate the search mechanism for

determining the distance of a surface, under the

assumption that the correct FOE is known. This process

for determining surface distance is referred to as "Z

search". All surfaces were initially assigned a single

(in most cases incorrect) initial Z value. In this

experiment, various such initial models were tried in an

examination of the search behavior, but we report on only

one experiment that typifies the search events. The

results from applying Z search to these various initial

models were almost identical.

The FOE was placed at a point that lay on the

passenger side of an automobile in front of the one

carrying the camera. This was a logical choice for the

FOE since the car in front of ours should have been in a

position that ours was about to occupy. This FOE was

confirmed by drawing several lines on the superimposed

images to track distinct scene points. These lines all

passed within six pixels (on a 512 by 512 grid) of the

chosen point.
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There were no horizontally oriented objects in the

subimage. Therefore, we limited the processing to the

discovery of a Z value for each surface assuming vertical

surface orientation.

GOAL: To determine the value of Z associated with

visible portions of surfaces in the subimage, where all

surfaces are assumed to be in the vertical orientation.

GIVEN: A correct FOE, and an initial segmentation

that is mostly correct. The Z value for each surface was

initially set to 512 meters.

RESULTS: After twenty iterations of refinement all

k values had attained the stopping criterion of .025,

i.e., a search increment of + 2.5% for each surface Z

value. Figure 65 shows the progression of the search.

The resulting Z values for the surfaces (see figure 66)

were 34 meters for the sign, 47.4 for the telephone pole,

and 61.8 for the tree. These values are quite close to

the correct values. The actual values of Z when the last

frame was imaged are 34 meters for the sign, 45 meters

for the telephone pole, and 55 to 65 meters for the tree

(various visible parts of the crown are at different

distances).
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Figure 66. Surface model for the subimage.
Brightness encodes distance.
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Recall that an error value is derived for each

surface value for each surface. The error value is the

average (across the surface) of the difference between

the acutal and synthetic t 0 feature images. This value

runs between 0 and 64, where 0 is no error, and 64 is a

maximum. This range results from the scaling that was

performed on the initial features to generate a

two-dimensional histogram. In practice no minumum went

below 2.0 and no maximum above 40. To understand the

performance of the search we have plotted error value

versus Z value. Figure 67 shows the error functions for

the surfaces in these images. The figure shows details

of the error function obtained by trying a number of hand

selected Z values. Note that for these surfaces the

error functions have clear minima, and the error values

increase sharply for the nearly flat surfaces, while it

rises very slowly for the tree which is really composed

of a distribution of distances.

Figure 68 indicates the reduction of the error

values during progression of the search. This figure

depicts the error values obtained for the Z values that

the search generated during successive iterations.

.1

!
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DISCUSSION: These promising results indicated that

the distance to surfaces, i.e., the Z values could be

obtained automatically with the search process, at least

when there are available both a reasonable segmentation

which approximates surfaces of the scene, and an accurate

FOE. The resulting distance values are within

experimental error bounds, and the error functions are

reasonably well behaved.

IV.3.2 Experiment # 2L unweighted search for FOE, given:

a refined surface model. This experiment, again using

the subimage, was intended to evaluate the FOE search

process in a controlled manner. Here, the Z values of

each surface were fixed at the result from experiment #1.

Thus, the FOE search proceeded with the assumption that a

good model was available. Because o' this assumption,

the simple (rather than weighted) FOE -iearch mechanism

could be tested.

GOAL: To demonstrate the effectiveness of the

unweighted FOE search applied to the subimage and

operating with a correct surface model.
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GIVEN: A reasonably accurate surface model (which

was actually developed with the use of the correct FOE,

i.e., the result of experiment #1).

A starting point for the search was chosen near the

center of the original image, at the (0,0) coordinate of

the subimage (upper left hand corner). The search would

take eight steps to achieve a + 1.0 pixel value for k,

the minimum refinement increment. A ninth iteration is

also performed to check that the final focus has less

error measure than the eight adjacent foci.

RESULTS: After nine iterations the FOE was found to

be (344, 152). This differed from the one used in the

first experiment by only one pixel (out of 512) in the Y

direction, and no difference in the X direction (see

figure 69). Table 2 summarizes the search, where

coordinates are measured relative to the origin of the

subimage.

DISCUSSION: This result indicates that the FOE

search located the FOE when a correct surface model was

employed. Unfortunately, it does not show that the FOE

it finds is correct, only that it finds an FOE that fits

a refined distance model.

!
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Entire image

Subimage

Figure 69. The FOE search was performed using onlv the data
in the subimage pair. This figure represents the search path.
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Search for FOE
ITERATION BEGIN INCREMENT END DIRECTION

NUMBER ROW COL K ROW COL

1 0 0 128 128 -128 ,
2 128 -128 64 128 -128

3 128 -128 32 128 -96

4 128 -96 16 128 -96

5 128 -96 8 120 -104

6 120 -104 4 124 -104

7 124 -104 2 124 -104

8 124 -104 1 124 -103 ___

•9 124 -103 1 124 -103 ,

Table 2. The successive iterations of FOE serach.
a dot under "direction" indicates that the central
focus was chosen. The nineth iteration checks to
ensure that the last focus is surrounded by foci
with larger error measures.

' ' I I II I I I . ..... . . . I OEM I=
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IV.3.3 Experiment #3, resegmentation, given: a refined

model. The third experiment tested the resegmentation

process in an attempt to remove areas of the segmentation

that are in error. The segmentation in the first

experiments was manually corrected; consequently, it had

very little error in order to provide a basis for

evaluation and control over the processing. Thus, there

were only a few errors in the initial model that needed

to be attended to in this image. However, by choosing

image numbers 51 and 54, a serious segmentation error

does occur. By allowing this error to reamin when

interactively modifying the segmentation, we can

demonstrate the capability of the resegmentation process.

Recall that an "error image" is an image where each

pixel is given a value equal to the difference between

feature values of that pixel in the real t image and
0

in the synthetic t 0 image. The synthetic image

represents the inferred position based upon hypothesized

surfaces in the model. The error image that is based on

the refined model is used for resegmentation.

An automatic threshold selection algorithm (Kohler

1980) is used to produce new regions where values in the

error image are above a threshold. The selection of an

ONO -
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I
appropriate threshold is based on the measurement of

differences between adjacent pixels in the error image.

The threshold which produces the maximum average

difference is selected. Thus, the strongest error

patches are roughly segmented. Then the plurality update

rule (see appendix) is applied for two iterations to

smooth these patches and remove those composed of only

one or two points.

GOAL: To resegment the subimage based on an error

image, and to derive correct model information for the

areas previously assigned incorrect values of Z because

of an incorrect initial segmentation.

GIVEN: A model with an incorrect segmentation,

where some hypothesized surfaces are actually several

surfaces at different distances.

RESULTS: As shown in figures 70 and 71, the

thresholded areas correspond to surfaces that were

incorrectly segmented. All of these areas were more

distant than the initial model search indicated. Figure

71 shows the final model segmentation. The blob adjacent

to the upper right of the sign as well as those on the

lower right are holes in the tree showing the side of a

distant building.



a)

b)

Fiqure 70. a) thresholded error image for images
51 and 54, and 1)) resulting error regions after
two applications of the pluralityv update rule.
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Figure 71. Model after re-segmentation and merging
from frame numbers 51 and 54.

AL4
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DISCUSSION: This experiment shows that when

sufficient pictorial contrast (exhibited by feature

difference) exists between areas which have been

incorrectly joined as a surface (so that the hypothesized

Z value is incorrect for at least part of the

hypothesized surface) it is possible to segment such an

area from the image, and proceed to search for its

correct Z value.

Sufficient visual differences existed between many

of the predicted and actual surfaces that were in error

to completely extract them as regions. As explained in

chapter II (in tracking techniques), this is not

generally the case, and the portions of the incorrectly

segmented lower right portion of the sign that did not

have sufficient contrast could not be segmented. Often

in the case of relatively uniform regions, only the

leading and trailing areas of such surfaces will be

detected. However, repeated application of the

resegmentation process can reduce the error regions until

they are completely removed and refined.
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IV.3.4 Experiment #4, unweighted search for F, given:

a uniform (mostly incorrect) Z model. In preparation for

the marriage of FOE search and Z value search, we

performed the fourth experiment. The first two

experiments showed that the FOE search could proceed with

a correct model of Z values, and a Z value search could

proceed with a correct FOE. The aim of this experiment

was the evaluation of the performance of the unweighted

FOE search with the model grossly in error (most Z values

wrong). We expect this technique to fail, for reasons

explained in chapter III, thereby justifying the neee for

the weighted FOE search mechanism. Performance was

judged by examining the first few FOE search steps with

different initial uniform models of surface distance.

GOAL: To demonstrate the limitation of simple FOE

search with an incorrect uniform model.

GIVEN: An initial model with correct segmentation,

but incorrect uniform Z values, and a starting FOE at the

center of the original image.

RESULTS: As summarized in figure 72, a uniform Z

value of 256, 128, 64, and 32 meters all produced a first

step of the search for the FOE that was correct, i.e.

the closest step toward the solution given the initial
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entire image

256 M

subimage

32M * Corrcoct "'OE
3 2M

64M

Figure 72. The unwieghtcd search using initial m,,'dels
with 256, 128, 6. and 32 meter settings.
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step increments. However the second iteration of FOE

search was grossly incorrect for the 256, and 128 meter

settings. For these settings the search continued to

diverge from the correct solution. The first five

iterations for the 32 and 6 4 meter settings remained in

the vicinity of the correct solution, rather than

diverging from it, although they produced different paths

to the same final value. Table 3 summarizes the

searches. In this table the direction arrows represent

the corresponding directions in (figure 72) of FOE

movement during each iteration of the search..

DISCUSSION: Since 32 and 64 meters are reasonable

estimates for many surfaces in the subimage, it is not

surprising that such choices would produce the best FOE

search. When the model is further in error, the FOE

search moves further from the correct solution.

The results show however, that the search cannot

continue beyond two steps without going wrong (converging

to an incorrect result), even for the best initial model

(64 meters). Since the goal is to achieve an

interpretation with little or no a-priori knowledge, the

choice of 64 vs. 12R or 32 meters should be

inconsequential. This, result demosntrates the necessity

> I



206

UNIFORM Z SETTING DIRECTION RESULT FROM EACH ITERATION

IN METERS

256 / •

128 / 0

64 •

32

ITERATION 1 I 2 3 4 5

Table 3. Successive iterations of unweighted FOE
search run with various uniform settings of Z. A

dot indicates that the central focus was chosen.
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of the weighted FOE search.

IV.3.5 Experiment #5, weighted search for the FOE and

surface model simultaneously, given: a uniform (mostly

incorrect) Z model. The remaining problem, as

demonstrated by experiment #4, is the major goal of this

research. That is, the unification of FOE search and

model refinement into a surface interpretation system

that could produce a reasonable model with limited prior

knowledge. We proceed by first obtaining an initial

static segmentation; second, selecting a uniform set of

Z and Y values; third, alternatively applying

weighted FOE and model search steps; and finally,

resegmenting based on remaining error. Since the entire

image was used for this experiment (by averagitig the

original), the ground plane was visible, and the model

included values for Y as well as values for Z. Since the

entire image is averaged, the FOE search is on a 128 by

128 grid and only takes six steps to complete.

The strategy of alternatively applying weighted FOE

and model searches is based on controlling the area of

the image over which the model search could be driven to

choose wrong Z or Y values. Since the goal is to keep

the FOE error from driving the Z and Y search to produce

1
I
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wrong values, and because the incorrect model can drive

the FOE to an in'urrect result, we must first apply as

many FOE search stpps as can be relied on that converge

toward the correct solution before proceeding with Z and

Y search. Then, we must understand the nature of the

errors caused by incorrect placement of the FOE, and use

this information to control the Z and Y search.

Recall that the relation between Z and A d is

expressed in equation (4). Now consider the effect of an

error in placement of the FOE on the value of Z that the

search will converge upon. IF the FOE were incorrectly

placed further from or nearer to an image pixel, it would

lengthen or shorten (respectively) the values of d and

therefore A d. Thus, for a given error in FOE, and a

given Z, pixels closer to the FOE would have a greater

induced error in A d then those further from the FOE.

It is possible to express the error in terms of Z

resulting from FOE placement error thus:

FOEerror

e =

d

where e is the multiplicative model error term arising

from FOE placement error divided by the distance d of a
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point from the actual FOE.

To control the model search with the FOE in error,

we choose a stopping criterion k, and do not allow the

model search to proceed beyond it. Then, surfaces which

have an FOE induced error less than the chosen k, will

have their search stopped before an attempt is made that

could result in a wrong choice.

We can control the FOE error under that assumption

that the FOE search is proceeding toward Thc correct

result. If so, the increment (in pixels) of the next FOE

search is the average error that the present FOE has with

respect to the final FOE. For convienence, the units of

the fraction can be pixels, and the error a percentage.

If we wish to prevent incorrect FOE placement from

introducing Z and Y value errors in all but 1/16 of the

image (in the worst case), then the value of d would be

16, because a +8 by +8 area around the actual FOF

contains 1/16 of the image points. For the first FOE

search, three iterations (as far as the FOE search can be

expected to give correct results) would make the next k

equal to four pixels, yeilding an average error of four

pixels for FOE placement. Thus e 1/4 0.25.

'*- _ . . . . .. . . * .II--HI I -- I--lIII
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By running the model search with a stopping

increment of 0.25 we are assured that, in the worst case,

model errors might exist in less than 1/16 of the image.

Then, another application of FOE search, resulting in

uncertainty of result to two pixels, yields a stopping

criterion of k=.125, for the next model serach. Another

application of FOE search (resulting in uncertainty of 1

pixel) is followed by model search with stopping

criterion of k=.06. This is followed by a final FOE

serach step (resolving the last pixel of placement).

Experiment #5 was performed on the entire image to

observe the effect of choosing various (generally

incorrect) uniform Z values. Out of the set of 128. 64,

and 32 meters we will note differences in final FOE

placement. The starting Y value was 1.1 meters.

GOAL: To demonstrate that a sequence of search

steps can result in the simultaneous derivation of a

correct FOE and surface model.

GIVEN: An initial segmentation and uniform values

of Z and Y for each hypothesized surface.
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RESULTS: One application sequence was found to be

very effective at both finding the FOE and refining the

model (see figure 73). Figure 74 and table 4 summarize

the FOE search, and figure 74 shows the number of

surfaces undergoing change (there are 152 surfaces) in

value during the model search iterations.

DISCUSSION: By using weighted FOE search the

effects of model errors on FOE placement were greatly

reduced. Three steps of the weighted FOE search

generated the same results (of FOE placement) for initial

models with uniform Z values of 128, 64, and 32 meters

(see table 4). The accuracy of FOE placement allowed the

model to be driven to a stopping "k" of .25 with possible

errors in 1/16 of the image. This took eight Z and Y

search steps. Then one more FOE search step was followed

by 12 model search steps with the stopping criterion set

to a "k" of 0.125. Then one step of FOE was followed by

12 more steps of model search with stopping "k" set to

.06. Finally one more step of FOE search placed the FOE

at (41, 85) for the 128 meter initial model, and (43, 87)

for the 64 meter initial model. The last step of the 32

meter initial model has two chcices of equal minimum

error, with the final FOE at (43, 87) or at (42, 85).

The position (42,85) is believed to be the correct

po
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500 iSkv
100-

50-

r- 20_

0
4 8 14 20 26 32

iteration number

Figure 73. A sampl e of nine surfaces at the
begining, middle and end of vach Z search.
Iterations number 0, 8, and 20 had FOE
search step-, applied.
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Z SETTING DIRECTION RESULT FROM EACH ITERATION

METERS

128 '

64 r

32 /

ITERATION # 1 2 3 * 4 5 * 6

Table 4. Successive iterations of weighted FOE
search run with various uniform settings of Z. A
dot indicates that the central focus was chosen.
An asterisk indicates the application of model search

between those iterations of FOE serach.
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Entire image

insert indicat 128 th Fnl rO plt mnsfo ifrn

initial models as discussed in the text.
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Figure 75. The number of surfaces that change value
during iterations of 7 and Y search. FOE searches are
conducted between these searche..
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placement of the FOE. Differences as small as two pixels

have very little effect on the process or final model.

This agreement in final FOE is considered a successful

demonstration of immunity to initial distance assignment.

The decision of correct orientation for each surface

is made on the basis of lowest error (see figure 76 for

final model). Although two surfaces (on the road) were

incorrectly posited as being vertical rather than

horizontal we feel that the model is good. The two

frames are only eight meters apart in space, and the

horizontal regions contain very little visual texture.

IV.3.6 Experiment summary. The experiments presented

here demonstrate the feasibility of constructing an

interpretation from an image pair with very little human

intervention. In some experiments, the automatically

derived segmentation was then modified so that a nearly

correct segmentation could be used to test the processes.

Given such a segmentation, the processes behaved well.

In the case where no human intervention ocurred, the

processes still performed quite effectively. The only

major error was the incorrect decision on surface

orientation for several surfaces.
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b)

b44

Figure 76 a) the second image of pair 1'4 and b)

the final surface model where distance is encoded

as brightness.

, . A
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The need to register the frames by hand was the

result of small changes in camera orientation for which

the cameraman and gyroscope did not compensate. It might

be possible to automatically register the images by using

correlation techniques, but this was not tried. One

might also consider recording the inertial frame during

filming and then using it for registration.

The use of weighted search for FOE makes possible

the automatic generation of a surface model without first

supplying a nearly correct surface model or FOE value.

Thus, the system demonstrates (at least for one data set)

a solution to the "start-up" problem. With a surface

model constructed, the incorporation of it into a more

complete interpretation of the images as objects will be

the remaining problem considered in this thesis.

4.
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CHAPTER V

OBJECT INTERPRETATION

The identification of objects in natural images of

outdoor scenes has been a research goal of image

understanding for several years (Hanson 1978b, Bullock

1978, Tenenbaum 1976, Bajcsy 1974, Ohlander 1975, Levine

1978). The complexity of visual information and the

difficulties involved in applying it to the problem of

object identification led to the development of various

representational structures. The representation

presented here was developed to allow flexibility in the

definition and application of various forms of visual

knowledge for scene analysis (Hanson 1976 and 1978b,

Williams 1977b). Demands for flexibility in the research

environment has led to modularization of the

representation. The resulting structure in the VISIONS

system is a form of semantic network, where the knowledge

is represented as interconnected graphs (Lowrance 1978).

Inference of surface and distance descriptions from

static images has been a critical and challenging element

in search of the goal of automated object identification.

Once the spatial disposition of scene components is

obtained, the inference of object identities becomes a

219
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more tractable problem (Hanson 1978b, Marr 1977).

Consider an image with a centrally located green

region which we assume to represent a surface. Basing an

hypothesis solely on color, the region could represent a

tree, grass, or perhaps a surface of an automobile. If

the orientation of the surface(s) and its distance were

known, the size of the object could be derived, and the

set of possible identities could be narrowed to fewer (or

even a single) object(s). Thus, the spatial disposition

of surfaces is very useful for the identification of

objects in general scenes.

Although several sources of visual knowledge have

been explored within our representation, only two

knowledge sources are examined here. One identifies

objects based on size, and the other does so based on

color and texture. To provide a framework to understand

the application of this knowledge, this chapter begins

with a section explaining the representation used, and

then continues with a section about the knowledge

implemented in the representation. The concluding

section describes results obtained for object

identification.
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V.1 Representation

Our representation of information in a static image

is intended to describe the objects that appear in the

scene being the imaged. This description is usually in

terms of the objects' identity, their position in the

image, their position in the world relative to the

camera, and the spatial relationships between the

objects. Similarly, a representation for objects in a

dynamic image should include all of the aspects of a

static reprsentation, and additionally should

characterize object dynamics, including the motions of

objects, changes in identity, changes in appearance,

observer dynamics, etc.

We have not addressed the problem of understanding

objects with independent motion, and hence do not address

the issues surrounding dynamic representations. For

representation of motion concepts see (Badler 1976,

Tsotsos 1976). Rather, the goal here is to infer surface

properties from information gathered from a moving image.

We have opted for a simple stationary representation of

objects in the environment, frozen at time t 0 The

depth properties, inferred from image dynamics, are used

(along with other features) to then infer object
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identity.

V.1.1 Levels of abstraction. The visual world can be

described in terms of scenes that are composed of objects

which 3atisfy a set of spatial relationships. The

objects can be described in terms of their delimiting

surfaces, and the surfaces have properties of color and

textures, shape, size, position, etc. This descriptive

hierarchy leads to a natural taxonomy of visual knowledge

into abstraction levels (see figure 77), in a fashion

similar to those used in speech understanding research

(Erman 1975). Although one might posit more levels or

perhaps a continuum of visual abstraction, fh- particular

levels of surface, object and scenc are probaLly

essential to the object identification process (Williams

1977a, Parma 1980).

We are interested in a simple bottom-up approach to

object identification, i.e. hypotheses based on image

data. If the object interpretation system is given (or

can determine) that the image is of a road scene, then

the scene level of abstraction could be used to reduce

the set of objects to be considered, and constrain their

relative position. Although the discovery of scene

identity can be a bottom-up process, the application of
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Figure 77. Abstraction levels for
visual knowledge

LI



224

scene information is essentially top-down. We will not

discuss the application of knowledge at the scene level

of abstraction. This thesis does not explore the

possibilities of such processing, although it is clear

that top-down processing is a key element in biological

perception (Hochberg 1971, Price 1975, Arbib 1972,

Spinelli 1967).

Bottom-up processing relies on as little a-priori

knowledge as possible when inferring object identity.

Features computed from the image data are matched with

prototypes of features that are associated with stored

object classes. Thus, although prototypical information

is used in the identification process, the object

identity is derived from information in the image, in a

bottom-up fashion.

The result of the surface interpretation process is

a model of the surfaces appearing in the images. This

model contains the orientation and distance to each

surface. Given this information, and the focal length of

the camera lens, the three-dimensional size of the

surface can be determined directly. Additionally, color

and texture, measured over the areas of the image covered

by the surfaces, is available for bottom-up analysis.
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V.1.2 Short and long term knowledge. An interpretation

can be viewed as a set of instantiated general concepts

which must be related to the current environment. Thus,

the representation within which interpretation occurs

should be divided at every abstraction level into

sections of short-term or image-specific, and long-term,

or general information. The interpretation process acts

to fill the short-term side of the representation and to

relate it to both long-term concepts and image entities.

An example interpretation, where three objects are

instantiated, is shown in figure 78. The scene level of

abstraction is included in this example to show its place

in the representation.

Nodes represent concepts such as object classes, or

the orientations of surfaces. Arcs represent

relationships between concepts such as super- and

sub-class. This knowledge framework is t' ,refore much

like a semantic network (Quillian 1968, Woods 1975). but

with partitions that collect substructures into loci of

similar meaning and utility for the object interpretation

process. These loci are called spaces (Hendrix 1975,

Lowrance 1978). and can be viewed as separate graphs.

Arcs connecting nodes in different spaces relate entities

___ __ __ __'_



226

ob 1 1

short-term long-term

Figure 78. An example of an interpretation where

three objects are instantiated
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I
at different levels of abstraction, such as the surfaces

that delineate an object, or the objects that participate

in a scene. Arcs connecting nodes in short-term spaces

with those in long-term spaces indicate instances of

long-term concepts, such as an instance of the object

class "TREE", or an instance of a scene class

"ROAD-SCENE".

V.2 Knowledge Sources

The processes that act to form an interpretation are

called Knowledge Sources or KSs (Erman 1975). Because

the distinction between facts and hypotheses is

maintained in the representation by division of the

structure into long-term and short-term parts, it is

clear where the KSs accept input and produce results.

Additionally, be.cause knowledge is divided into

abstraction levels, the domain of each KS is usually

restricted to a small set of spaces (often one) and the

range of the KS is typically some other single space of

the representation.

For example, consider a knowledge source that bases

its hypotheses on the three-dimensional size of an

object. The short-term surface space would contain

surfaces as interpreted information derived from the
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images, while the long-term surface space would contain

surface size and orientation as expected for the general

object classes which they describe. The size KS would

then compare the derived size of imaged surfaces with the

stored sizes in order to hypothesize object identities.

One strategy is for the best match to be instantiated by

placing a node in the short-term object space, and

linking it to the long-term object-class node and the

derived surface node via arcs across and down the

knowledge structure as shown in figure 79. Examination

of plausible strategies for organizing the application of

knowledge sources and for selecting between possibly

competing hypotheses is not the subject of this thesis,

although selection of appropriate strategies is important

in the interpretation process (Parma 1980).

Two KSs have been developed for object

identification. One bases its result on the color and

texture measured over the interpreted surfaces. The

other is based on the three-dimensional size of an object

derived from the distance and orientation of each

surface. Both of these KSs apply an attribute matching

technique that produces an heuristic confidence measure

for the identity of each surface. The simple strategy

employed for object identification is to apply both KSs
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I

arc indicating the

image specific entity

Figure 79. When an object is instantiated, a node
is placed in the representation with arcs connecting
it to the object class and the image entity.
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to each surface, deriving for each one a confidence

measure for all object classes in &he data base. The

highest resulting confidence indicates the object class

that best identifies a surface. Adjacent surfaces with

the same identification can then be joined into a single

object.

Knowledge source development and application has

proceeded through three phases. First, data were

collected from images to form a data base of object

attributes. Second, attribute prototypes for each object

were abstracted from the data base. Third, a matching

process was constructed to compare attributes extracted

from the image with the stored prototypes to derive a

confidence value.

The prototype and matching phases are very similar

for the size and color KSs. The data base for the color

KS was formed from digitized images, but the size KS

prototypes were estimated and input by the author because

the three-dimensional size of an object is available from

our real-world experience.
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V.2.1 Data collection. Data were collected by

interactively selecting rectangular areas of images that

each contained a single object class. From the eight

images in the system library when the data were

collected, 66 samples were selected. For each

rectangular area the name of the object class was

recorded and 11 features were computed. The average and

standard deviation (termed "S.D." hereafter) of each

feature were computed over the sample rectangle and

stored in the data base. The two simple statistics were

assumed sufficient to characterize each sample, even

though some samples did not have normal distributions.

The data base formed from these samples consisted of

averages and S.D.s of 11 features for each of 66 samples.

The majority of the samples were taken from the object

classes bush, grass, road, sky and tree. The proportion

of object class samples are shown in figure 80. Samples

other than those of the five target objects were taken in

an attempt to reduce the chance of false matches on

non-target objects.

The features measured were of two basic types. The

first consists of eight point features, which are

features that can be computed from the data at a single
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pixel. This includes the original red, green and blue

data, intensity and various color transforms. The second

consists of features computed over areas, and are loosely

called "texture features". These features are

measurements of the number of edges in two directions,

and the average interpixel contrast.

V.2.2 Prototype formation. A prototype is abstracted

from the data base for each object and each feature.

Because of the variability of color and texture among

man-made objects, such as automobiles, houses, and

people's clothes, the set of objects classes was

restricted to the five classes of bush, grass, road, sky,

and tree.

Prototypes were formed as heuristic functions, and

given weights which reflect the importance of each

feature for each object class. The simplicity of this

heuristic prototype allowed incorporation of estimates

during the formation of size prototypes.

For each feature f of each object class 0 therei iT

is a range of possible feature values X . Statistics

that summarize the distributions of the means and the

S.D.s of each feature value across the sample population

of each object are used to form the prototypes. Thus,

ii
-.- V'. .
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for each object 0 a number of prototypes are formed,
i

one for the mean of each feature, and one for the S.D.

of each feature.

Consider the feature "raw green", across all samples

of the object class "TREE" (figure 81). The average

values of raw green across all data base samples of the

object class "TREE" might range from 10 to 30, indicating

that trees' greenness ranges from small to medium values.

The S.D. values however, might all be nearly the same,

say from 5.5 to 6.0. This would indicate that although

the average tree greeness varies considerably over the

samples, the variation of tree greeness varies little

across the samples. To capture this important

characteristic, a separate prototype was formed for the

average and for the S.D. of each feature for each object

class.

The ability of each feature to discriminate between

the target objects is not the same. Consider the feature

"raw blue" as a discriminator of the object class "SKY".

In the data base very few samples, other than those for

sky, have an average value of raw blue within the

interval of the minimum and maximum average raw blue

values for the samples of sky. Thus, average raw blue is
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Figure 81. Both the average and the standard deviation
are used as features in the data base. This example
shows that the average can vary widelv between samples,
while the standard deviation remains the same.
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a very good discriminator for the object class "SKY". On

the other hand, the interval of minimum to maximum raw

blue values for "TREE" almost completely overlaps the

interval for samples of the object class "GRASS".

Although raw blue is a good discriminator between the

object class "SKY" and other object classes, it is not

good for discriminating the object class "TREE" from the

rest of the object classes.

Let us attempt to account for the ability of each

feature f in discriminating object 0. from all other

objects. One must remain aware of the fact that samples

across images are subject to several sources of

variability, such as lighting, color processing,

digitization, etc. Because we have a small training set,

and considerable variability, standard statistical

pattern recognition approaches to determine each

feature's power of discrimination were rejected.

Instead, a weight w is calculated by checking theii

number of data base samples that fall within an interval

assiciated with a particular object. The interval of

minimum to maximum x was chosen because this interval11

includea all samples of the object and represents the

limits of variation observed in the training set (data

base). When all data base samples for 0 (where m is
m



I

237

not equal to J) fall within the interval

[min(X ),max(X )] the weight w should be zero,i i ij

indicating that feature f is useless for discriminatingi

object 0 from others in the data base. When they are

all outside the interval the weight w should be one,

indicating a perfect discriminating feature for 0 Thej

weight w is calculated as a ratio:

# outside interval
w -------------------------------- where m

total # samples X #

The numerator is the number of samples (excluding those

for 0 ) for which the feature value falls outside the

minimum to maximum interval of object O. , and the3

denominator is the total number of samples (excluding

those for 0.

V.2.3 Matching. The color and texture KS is designed to

match the feature values of a surface in an image to the

prototypes of each object class. The result of the match

is a confidence value for the identity of the region as a

particular object. The object that produces the maximum

confidence value from the matches of one surface with a

number of object class prototypes is then chosen to

identify the surface.
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The matcher uses a weighted average of match values

obtained by comparing the surface's feature values with a

function derived from the prototype values for the

object. We express each match value as m (X ). The

notation X refers to the f feature value for theik i

surface k.

The prototype match function m is constructedij

from the prototype values for the average, standard

deviation, minimum and maximum of feature f for all
i

samples of 0 that are in the data base. Note that when

the feature is the average of raw blue, for instance, we

compute the average, the S.D., the minimum and the

maximum of the set of samples of average raw blue in the

data base for object 0 When the feature is the S.D.

of raw blue, we compute the average, S.D., minimum and

maximum of the S.D. of raw blue samples in the data base

for object 0J .

Now we will form the heuristic prototype function

mij shown in figure 82 with no assumptions about the

statistical validity of its use. However it is being

constructed to be robust within the (possibly wide) range

of feature values that have appeared for each object in

the training set. This function is flat topped, yielding
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a value of 1.0 for the interval of one standard deviation

above and below the average. The function decreases

linearly to zero as the feature value moves from one

standard deviation above and below the mean to the max

and min values, respectively; and the function takes on

a value of -1.0 outside this range. The feature value

X for feature f , measured from the surface k, is theik 1

argument of the matching function, and the range of the

function is { -1} U [0,1).

Each feature value for a region results in one m

value for each object. If the value X is within aik

S.D. of the average expected value, the confidence is

maximum, and therefore contributes strongly toward the

hypothesis that the surface represents the object 0

If it falls outside this range, but still within the

minimum and maximum of data base entries, it results in

less (but still positive) confidence. If it falls

outside the range of values in the data base, the result

is strongly against the hypothesis that the surface

represents the object 0. , because no sample for 0 has
j o

been observed in this range.

p . . 2. :. .
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I
The weighted average Cjk for one object Oj given a

surface k, is formed from all feature matches ) (X )I ij ( ik

and accounts for the feature discrimination power thus:

Cjk wij(Xik)

W..1 lj

The results for all 0. , given one surface k, can then be

compared. The maximum of C jk across all J is chosen for

the hypothesis that object j is the identification for

surface k. The resulting confidence ranges over the

interval [-l,+1J, and is interpreted as evidence in

support of the hypothesis if positive, and against the

hypothesis if negative. Zero is interpreted as the point

of no information.

V.2.4 Size prototype and matching. The size of

three-dimensional bodies can be expressed in the

dimensions of height, width and depth. This implies a

standardized view, since a rotation of Pi/2 radians about

any axis switches two of the dimensions in a fixed

coordinate system. The objects that we deal with have

one fixed axis, which is the vertical, or Y axis. This

is because our objects have functional dependence on

gravity, and one particular axis is always aligned with

the gravitational field. Our camera does not rotate

appreciably with respect to the Y axis, and the Y axis

I
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maintains good alignment with gravity. The Z and X axes

are arbitrarily oriented with respect to any scene

object. Therefore, the distinction between width and

depth is difficult to make.

Fortunately, many objects in our scene have

approximately the same dimensions of width and depth, or

else there is an expected view of either width or depth.

With these assumptions, we can define the prototype size

of an object in two dimensions. The prototypes were

generated ad hoe by the author. Figure 83 shows the

prototype matching functions for height and width of our

objects.

Size matching is performed in a manner similar to

color matching. The two dimensions of size (where i=1 or

2 represents height or width, respectively) are each

considered a feature, and assigned a weight of 0.5 each.

No weights are assigned the size features; they have

equal influence on the size KS result. The average of

the m ij values then forms the resultant confidence value

for the size KS.

4
-
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V.3 Results

V.3.1 Results for the color KS. The color KS was tested

on two static images to assess its performance. Table 5

summarizes these results. It was then run on the data

from frame #45 and these results are presented at the end

of this section, but are not part of table 5.

Because texture measures can only be computed in

regions large enough to fit the texture computation

window (a 5 x 4 area), one portion of the table removes

the results for regions in which no texture windows fit.

Also, to check the performance on larger regions, another

category is presented for regions with areas greater than

65 pixels. The original object set consisted of bush,

grass, road, sky, and tree. Because bush and tree have

very similar characteristics, each category was divided

into sub-categories. In one, the original five objects

were used, and in the other, trees identified as bushes,

and vice versa, were counted as correct identifications

of the super-class foliage. Neither of the images

contained a sample of road.
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The distributions of the highest confidence values

for each region are displayed in figure 84. These were

compiled with the tree/bush distinction removed. They

generally show that correctly identified targets have a

higher confidence than the non-targets, although there

still is significant overlap of confidence ranges. Not

surprisingly, non-target surfaces can have spectral

attributes very similar to the target objects. For

example, in the images used here, the house roof is very

similar to grass in the texture features, while the white

wall is similar to sky in color features.

Several non-targets which resulted in large

confidence values were examined. It was impossible to

distinguish them visually from the associated target

objects when the data were removed from the images and

displayed next to each other (out of context).

Additionally, the feature values were very similar. One

particular case was a portion of a white house which was

shaded from direct sunlight by a tree. The illumination

was therefore skylight and appeared exactly like the sky

in that image.
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Figure 84. Distributions of confidence values for color
KS applied to two static images, where a) shows four
object classes and all regions, and h) shows four object
classes and regions with area greater than 65 pixels.
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Table 6 shows the results from the color KS applied

to frame #45. The segmentation is shown in figure 85.

The major surfaces are presented here (see appendix for

complete listing). The three selected sky surfaces and

two selected tree surfaces are correctly identified.

Surfaces 48 (telephone pole) and 86 (sign) are included

because they were selected (by hand) for size analysis.

Surfaces 131 and 153 are entirely road, and identified

as sky. A close examination of the data and the images

reveals that the road appears exactly like portions of

the sky in this image. Therefore, if we assume that the

road and sky can look similar, we should expect that

horizontal objects with sky color which appear below the

horizon to be road. Surfaces 109 and 125 are a

combination of road and grass. Although 125 was

identified very slightly as grass, it contained very

little - it was mostly road. Number 109, which was

mostly grass was identified as sky or road. The grass

in these images was not very green, and since the scene

was imaged in Autumn, and there were not very many

representative samples of this type of foliage, one can

expect some error here that might be removed with a more

comprehensive data base.
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Except for the non-target problem, the color KS

performed well. With only three images to judge by, one

cannot quantify the results in a reliable manner. The

incorrect results on frame #45 probably result from the

facts that the road was reflecting a considerable amount

of skylight and the grass was dully colored. The

addition of a "horizon filter", where a sky

interpretation below the horizon can be re-interpreted as

road, and vice versa, corrects for the road problem. An

alternative filter strategy is to just remove the sky

choice and take the next largest (positive) confidence.

The approach, appears promising as a method for

incorporating relatively few samples, or human supplied

estimates into a system of knowledge application.

Improvements might be made by utilization of larger

training sets, and application of rigorous probability

and decision theory. Additionally, the use of color

standards, photographed along with the scene, could make

normalization of the data possible.

i
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V.3.2 Results for size matching. The size KS was tested

on static images (with assumptions of distance given)

(Hanson 1978b). The results using the surface

interpretation for the image pair 4 is given in table 7.

All objects (of the five tested) gave reasonable results.

The trees and telephone pole were correctly identified,

but the size of the sign (surface 86) fell within the

prototype for bush, and matched that prototype better

than the sign did. Since bush is in the target set for

the color KS, this is a good candidate for improved

recognition via a combination of the two KSs. The guard

rail posts (surface 141) closely matched the prototype

for sign also.

V.3.3 Combination of spectral attribute and size results.

The color and size KS results were multiplied together to

form a combined identity confidence. The maximum

combined confidence value served to choose the object

class for each hypothesized surface. The only objects

hypothesized entirely by size are the roadsign and

telephone pole. The only ones for which there is no size

information are the sky, grass and road.
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The combination of diverse sources of knowledge has

been treated in diverse ways in different artificial

intelligence research efforts (Erman 1975). Even in

pattern recognition literature a number of combination

algorithms have been presented, each with its own

rationale for the combining function.

The choice of multiplication as the combining

function coincides with the observation that size and

color are independent sources of information. In the

pattern recognition literature, the assumption of

independence of features leads to a multiplicative

combination with the maximum likelihood choice minimizing

error.

To perform this multiplication, the confidence

values are first put into the range interval [0,1).

Those objects for which no prototypes exist are assigned

a value of 0.5. Thus, strong evidence against and

hypothesis becomes represented by a 0., strong evidence

in favor by a 1., and 0.5 becomes the no information

point. Note that after combination (multiplication) the

resulting value takes on a different interpretation. The

combination of two 0.5 confidences becomes 0.25. Once

values are multiplied the results cannot be judged as
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having a reliable no-information point, but rather can

only be compared to one another and the maximum chosen as

the maximum likelihood class. The results for

multiplicative combination are given in table 8. Figure

86 shows the interpretation in terms of objects.

1
I |,
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Figure 86. The object interpretation. Key: from
brightest to darkest: Tree, Telephone pole, Sky,
Sign, Road, Unclassified surfaces are black. All
non-black surfaces are correctly identified,
except for the guardrail and grass.
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CHAPTER V I

CONCLUSIONS

VI.1 Summary

The goal of this thesis is the implementation of a

computer program that constructs an interpretation of

moving images of a natural scene. Given movie frames as

input, the system develops an internal representation of

the scene in two stages. First, image dynamics are used

to form a simplified surface model. Then, a model of the

scene in terms of objects is derived from the surface

model and other features of the images.

The following is a summary of specific

accomplishments:

1. Development of a method for interpretation of a movie

from a moving camera in a naturally occuring scene.

2. Development of a means for determining surface

distance from moving images using a predictive model

and point features.

3. The use of an hypothesize-test strategy.
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4. A method for representing and using visual knowledge

to build an object interpretation.

The focus of this thesis has been the development of

mechanisms for the analysis of motion in order to derive

surface hypotheses. The first portion of the system has

been explored in detail since it is the basis for a

surface interpretation of the physical environment. A

model is hypothesized depicting the three-dimensional

positions of scene surfaces relative to the camera. The

motion of image features is used to refine this model as

well as update it. The surface interpretation provides

both the object/background segmentation and size

measurement necessary for object identification. An

object interpretation is produced by comparing both

spectral features from the image and size information

from the surface interpretation to features associated

with stored object names.

A surface interpretation is first hypothesized,

based on a coarse static analysis. Then the hypothesized

three-dimensional model of scene surfaces is used to

predict image dynamics which are tested through

inter-image comparisons. This is in contrast to the more

-ommin motion detection techniques that detect image
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dynamics. Such systems then must compose a

three-dimensional model from the point velocities of

particular trackable points or areas in the images. It

is not easy to construct a three-dimensional model of the

scene from the typically scattered set of point

velocities that such systems produce. Often, because

they rely on edge features, or correlation windows,

(which are the image of borders between surfaces) such

motion detection systems will give false indications of

image motion because they may erroneously track portions

of an image that belong to several surfaces. The problem

is avoided in the system presented in this thesis by

using pixel features and a predictive model.

This approach avoids the problems that other systems

have in dealing with occlusion. With point features,

occlusion does not give rise to false matches, and with a

predictive model, the effect of occlusion is predicted. J

Within our definitions, the interpretation of

natural outdoor images culminates in an understanding of

the spatial layout and identity of objects. Information

on size, color, and texture is shown to be sufficient for

the identification of objects in our scenes. Although

the system has only been tested on one sequence of motion
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images of a road scene, we believe that the surface

interpretation process derives a surface model that would

be sufficient for object interpretation in other domains.

VI.2 Sources of Error

IV.2.1 Bad segmentation. Although re-segmentation can

compensate for bad segmentations, it is no substitute for

a good original segmentation. The image differencing

tehcnique used for re-segmentation can only extract the

leading and trailing edges of areas that should be

segmented when the areas are homogeneous. This is

because image differencing shows those portions of an

image pair that are different, and an homogeneous moving

region will create differences with a size equal to its

displacement. If this displacement is less than the size

of the region (in the direction of motion) then only the

leading and trailing edges will be detected by

differencing.

Also, it is possible to achieve better initial

segmentations through a "local" segmentation process

(Nagin 1979). However, partitioning of the image creates

problems with inter-image differencing around the edges

of each partition. Localization of the feature histogram

process leads to different cluster centers in each

.
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partition of the image. Because different cluster

centers are used, the feature vectors cannot be compared

when the inter-image displacements cross partition

borders. Therefore, the application of localized

segmentation to motion is left for future work.

IV.2.2 Blur. Blur is caused by movement during the time

when the shutter is open. Our camera has a 100 degree

shutter, which translates to .015 secs, or .25 meters of

travel, during the exposure of each frame. Thus, it is

unreasonable to expect the system to resolve distances to

this resolution. The effect of blur is to soften edges

that lie perpendicular to an expansion line (radial line

from the FOE) and to strengthen those edges that are

colinear with expansion lines. We do not know if blur

hinders or helps the refinement process. Consider the

effect of blur on a sharply contrasting boarder between

surfaces. It will give rise to a gradient in both the

first and second images of a pair. It might be possible

that such gradients will improve the refinement process

for homogeneous surfaces because inter-image matches will

have a variety of values when near to a correct match

(thereby giving a smoothness to the error function).

However, it is also possible that heterogeneous surfaces

would do poorly because texture elements would be also

.N .
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blurred and reduce the otherwise easily matched textures.

IV.2.3 Resolution. The effect of image resolution on

refinement is not straightforward. Since the system

interpolates to achieve sub-pixel resolution, it is not

clear how much improvement would be gained by increasing

spatial resolution. Increased resolution also means more

image points, and thus, the computational expense

increases.

Spatial resolution is related to distinguishability

of texture elements in the scene. When the resolution is

sufficient to distinguish visual texture, then the

texture elements become sources of information for

inter-image comparison. When the resolution is

insufficient, two things can happen. Either the object

appears homogeneous in both images, or the texture

elements appear in one image but not the other. A

homogeneous field can be tracked, but not as well as one

with texture. Texture change between frames is due to

the sampling process that forms the quantized image.

Also, changes in lighting, orientation and movement, such

as the leaves in trees, can change texture. These

effects are somewhat compensated for by the interpolation

process used during image synthesis.

A
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The interpolation process itself is not optimum.

One more suitable process would be a convolution of a

gaussian with the predicted displaced position. Such a

convolution kernel would require about 18 points and

considerable computational expense. No kernel except the

four point interpolater as described in chapter III was

tried. Because the images contained no very sharp edges,

it was felt that the simpler kernel was acceptable.

VI.2.4 Surface orientation. Some of the horizontal

surfaces were incorrectly labeled as vertical surfaces.

One possible cause for this error is the lack of texture

on the road. Another is the lack of sharply contrasting

regions on the road which did exist on other surfaces

such as the sign. More work should be done to examine

exactly what causes the residual error once the search

has completed, and under what circumstances the lowest

error is found for the correct orientation.

VI.3 Suggested Future Improvements

VI.3.1 Better data. The dynamic range and resolution of

the data were poor. This is the result of using super-8

film, and digitizing it through a television camera.

Larger format movie film would have required a larger

gyroscope for the more massive camera. Quality film
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Idigitizers take considerable time to digitize each frame,
and the use of such equipment was beyond the budget of

this work. The fine segmentations that result from the

use of wide dynamic range (and high resolution) images

indicates that higher quality data could improve our

process.

VI.3.2 Third orthogonal plane.

In other domains the third plane (XZ), and perhaps

others, might be necessary. Their inclusion merely

requires that a function be expressed which generates a Z

for any point on the surface. The inter-image

displacement can then be computed for each point, and

refined using the Z refinement technique.

VI.3.3 Automatic foveation (and feedback). To produce

accurate distance measurements and obtain detailed shape

information for more sophisticated object recognition,

the idea of a high resolution, steerable window, like the

fovea of the human eye, becomes an attractive mechanism.

Although such a mechanism was considered, it was not

implemented.

4..
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VI.3.4 Implementation of dynamic object representation.

A dynamic object representation was designed, but not

implemented, because it was not needed to achieve the

primary goals of this thesis. This representation would

extend the two-dimensional representation with the

inclusion of time. The resulting three axes of

knowledge in the representation would be short-term vs.

long-term, abstraction, and time. Since surfaces change

more rapidly than objects, and objects more than scenes,

the representation would need fewer spaces at higher

abstraction levels.

VT.3.5 More objects. More objects ought to be included,

and far more samples should be taken to make the data

bsae of object attributes statistically meaningful. The

design of the object interpretation section has no

inherent limit on the number of objects. The

computational cost increases linearly with the number of

features, regions, and objects. Classification accuracy

will likely decrease with a large number of objects, and

with several more objects one would implement a KS where

color and texture only provide constraints on identity

rather than providing unique solutions. Therefore, the

need for the scene level of description, which would

restrict the number of objects to an appropriate few,

would be highly desirable.
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APPENDIX I

RELAXATION AND THE UPDATE RULE

The objective of applying relaxation procedures to

obtain a segmentation is to use the context immediately

surrounding a central pixel to update that pixel's label.

The label updating is a parallel iterative process, with

a new set of labels replacing the current set of labels

on each iteration. The effect of applying this update

rule is to reduce noise points, and to smooth regions

which are jagged, or remove those which are only one or

two pixels wide.

A number of techniques exist for performing this

relaxation, and a number of update rules have been

explored (see Nagin 1979). The simplist is a "discrete"

rule, using only a single label at each pixel in a three

by three (nine pixel) neighborhood immediately

surrounding the central pixel. The new label chosen is

the mode, or most frequent label in the neighborhood. In

case of ties, either the label at the central pixel is

chosen if it is among the contenders, or one of the

contenders is chosen randomly.
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One simple option with this update rule is to count

the central pixel more than once. Then, if there is some

supporting evidence for the label (through a small number

of similarly labeled pixels in the neighborhood), there

is a greater likelihood that the pixel's label will

remain unchanged. In our processing we chose to count

the central pixel three times. Thus, the total number of

counts in the nine pixel neighborhood would be 11, and in

cases where only two distinct labels are present, there

would only need to be three that are the same as the

central label to leave it unchanged. The same rule,

counting the central pixel three times, was used for

initial segmentation and for segmentation of the error

image.

Io,
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APPENDIX II

THE UVW COLOR SPACE

The original color data are recorded by imaging the

original film through red, green and blue filters onto a

digitizing vidicon. These three filters produce a

tr-stimulus data set which can reproduce almost all the

colors recorded on the original medium. By considering.

these values as a three-dimensional vector, one can

manipulate the data to transfrom it into any other color

description. Hue, saturation and intensity are common

terms for one such transform, Y, I and Q are the three

used for the color television standard. For a clear and

complete description of color space transforms please

refer to Pratt 1978. The UVW color space has been used

by colormetric investigators who are interested in

converting between various color spaces, and has been

used very effectively for color image segmentation by

(Nagin 1979).

The V and W color features are used in this thesis

to form the two-dimensional histrogram for feature

generation. The V color dimension is basically a red

versus green oponent measure, and the W is a white versus

black measure. The computation for V and W are as

Mimi
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follows:

V -. 354 r - .797 g + .905 b

W .605 r + .801 g + .392 b

In this notation r, g and b are the red, green and

blue values respectively. The V and W values that result

are scaled into the range of [0,63) in order to generate

the two-dimensional histograms used in the feature

generation process.

I _
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A P P E N D I X I I I

COLOR AND

TEXTURE FEATURES USED FOR OBJECT INTERPRETATION

Eleven features were computed for use in the

formation of prototypes for each object, and subsequent

measurements for object interpretation. They fall into

two categories. The first is point features, where only

the values (red, green and blue) at each point contribute

to the average and standard deviation feature values.

The second category is texture features, where a

neighborhood of intensity values around the central point

contribute to the feature value.

The point features are:

raw red = r

raw green 2g

raw blue = b

Y = .299 r + .587 g + .144 b

I - .596 r + .274 g + .322 b

Q =.211 r + .523 g + .312 b

Saturation 1 - min(nr, ng, nb)

intensity (r + g + b)/ 3
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The notation r, g and b are the red, green and blue

values, and nr, ng and nb are the normalized red, green

I and blue values respectively. The normalized values are

computed as follows:

r
nr =:- - -- - -

r + g + b

ng = -
r + g + b

b
nb

r + g + b

The first texture feature is a contrast measure

computed over a small area. First the intensity

difference between the central pixel and each of the four

adjacent pixels is computed. These values are then

squared and averaged. This gives a measure of the

average square of intensity difference surrounding a

pixel and therefore is a measure of the strength of

texture.

The last two features are edge contrast per-unit

area, at each of two orientations, with non-maximal edges

supressed. The vertical measure is computed by first

1 forming the signed intensity difference between each

horizontal pair of pixels, thereby encoding vertical edge

I
I
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contrast as the magnitude, and the direction of contrast

as the sign. All those vertical edges which have an

adjacent parallel edge with the same sign and a greater

magnitude are considered non-maximal edges and are

supressed to zero. The average of the absolute value of

the remaining edges is the vertical texture measure

desired. The horizontal edge contrast with non-maxima

supression is computed in a similar manner. These two

measures are intended to roughly capture orientation

dependent characteristics of texture.

s.* *.
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